Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recombination of parent and daughter strand DNA after UV-irradiation in mammalian cells

Abstract

The mechanism by which mammalian cells replicate DNA containing pyrimidine dimers is poorly understood. When DNA synthesis is initiated after UV-irradiation in bacteria, parental DNA containing pyrimidine dimers has been shown to ‘exchange’ into the daughter strand DNA by a recA-dependent mechanism1–3. In earlier experiments, when growing mammalian cells were UV-irradiated and then incubated with labelled thymidine, pyrimidine dimers were initially interpreted to be in the newly synthesized DNA4, but later were found to be only adjacent to newly synthesized DNA in daughter strand present before UV treatment5. A way to avoid these problems of interpretation would be to use cells in G0 or G1 which are not synthesizing DNA at the time of irradiation. UV damage could then be detected in a very sensitive quantitative assay such as that recently described using alkaline elution and an endonuclease preparation from Micrococcus luteus6. I have now used this approach and report that up to 3 dimers per 109 daltons of daughter strand DNA could be detected 34–45 h after UV-irradiation in human peripheral blood lymphocytes (PBL), normal human fibroblasts, group A xeroderma pigmentosum (XP) fibroblasts and mouse 3T3 cells. This represents approximately 1–3% of the dimers present in the parent strand at this time after UV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rupp, W. P., Wilde, C. E., Reno, D. L. & Howard-Flanders, P. J. molec. Biol. 61, 25–44 (1971).

    Article  CAS  Google Scholar 

  2. Hanawalt, P. C., Cooper, P. K., Ganesan, A. K. & Smith, C. A. A. Rev. Biochem. 48, 783–836 (1979).

    Article  CAS  Google Scholar 

  3. Dressler, D. & Potter, H. A. Rev. Biochem. 51, 727–761 (1982).

    Article  CAS  Google Scholar 

  4. Buhl, S. N. & Regan, J. D. Nature 246, 484 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Lehmann, A. R. & Kirk-Bell, S. Photochem. Photobiol. 27, 297–307 (1978).

    Article  CAS  Google Scholar 

  6. Fornace, A. J. Jr Mutat. Res. 94, 263–276 (1982).

    Article  CAS  Google Scholar 

  7. Kohn, K. W., Erickson, L. C., Ewig, R. A. G. & Friedman, C. A. Biochemistry 15, 4628–4637 (1976).

    Article  Google Scholar 

  8. Nagasawa, H., Robertson, J. & Little, J. B. Radiat. Res. 83, 368–369 (1980).

    Google Scholar 

  9. Nagasawa, H. & Little, J. B. Radiat. Res. 91, 301 (1982).

    Google Scholar 

  10. Darzynkiewicz, Z., Traganos, F., Sharpless, T. & Melamed, M. R. Proc. natn. Acad. Sci. U.S.A. 73, 2881–2884 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Robbins, J. H. Ann. intern. Med. 80, 221–248 (1974).

    Article  CAS  Google Scholar 

  12. Paterson, M. C. Adv. Radiat. Biol. 7, 1–53 (1978).

    Article  Google Scholar 

  13. Laval, J. Nature 269, 829–832 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Riazuddin, S. & Grossman, L. J. biol. Chem. 252, 6280–6286 (1977).

    CAS  Google Scholar 

  15. Latt, S. A. A. Rev. Genet. 15, 11–55 (1981).

    Article  CAS  Google Scholar 

  16. Holliday, R. Genet. Res., Camb. 5, 282–304 (1964).

    Article  Google Scholar 

  17. Wolgemuth, D. J. & Hsu, M. Nature 287, 168–170 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Small, J. & Scangos, G. Science 219, 174–176 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Lavin, M. F. Biophys. J. 23, 247–255 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Cunningham, R. P., Wu, A. M., Shibata, T., DasGupta, C. & Radding, C. M. Cell 24, 213–223 (1981).

    Article  CAS  Google Scholar 

  21. Loveday, K. S. & Latt, S. A. Nucleics Acid Res. 5, 4087–4104 (1978).

    Article  CAS  Google Scholar 

  22. Kantor, G. J. & Setlow, R. B. Cancer Res. 41, 819–825 (1981).

    CAS  PubMed  Google Scholar 

  23. Carrier, W. L. & Setlow, R. B. J. Bact. 102, 178–186 (1970).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fornace, A. Recombination of parent and daughter strand DNA after UV-irradiation in mammalian cells. Nature 304, 552–554 (1983). https://doi.org/10.1038/304552a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304552a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing