Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage- and ion-dependent conductances in solitary vertebrate hair cells

Abstract

An important function of the peripheral auditory system is the resolution of complex sounds into their constituent frequency components. It is well established that each mechanoreceptive hair cell of the cochlea is maximally sensitive to a particular frequency of sound1,2, but the mechanisms by which this sharp frequency selectivity is achieved are still controversial3. The complex mechanical and hydrodynamic properties of the receptor organs and of the hair cells themselves are certainly involved3. However, in at least one auditory organ, the turtle cochlea, frequency tuning is greatly enhanced by the electrical properties of the hair-cell membrane; each cell in this organ behaves as an electrical resonator tuned to a narrow band of frequencies4. Using the ‘Gigaseal’, whole-cell recording technique5, we have investigated the biophysical basis of similar resonant behaviour in enzymatically isolated hair cells from the bullfrog sacculus. We report here the identification of three voltage- and ion-dependent conductances which may contribute to the electrical tuning mechanism: a non-inactivating calcium conductance, an A-type K+ conductance, and a Ca2+ -activated K+ conductance6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Russell, I. J. & Sellick, P. M. J. Physiol., Lond. 284, 261–290 (1978).

    Article  CAS  Google Scholar 

  2. Dallos, P., Santos-Sacchi, J. & Flock, A. Science 218, 582–584 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Dallos, P. A. Rev. Phychol. 32, 153–190 (1981).

    Article  CAS  Google Scholar 

  4. Crawford, A. C. & Fettiplace, R. J. Physiol., Lond. 312, 377–412 (1981).

    Article  CAS  Google Scholar 

  5. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  6. Lewis, R. S. Soc. Neurosci. Abstr. 8, 728 (1982).

    Google Scholar 

  7. Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    Article  CAS  Google Scholar 

  8. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  9. Eckert, R. & Tillotson, D. L. J. Physiol., Lond. 314, 265–280 (1981).

    Article  CAS  Google Scholar 

  10. Connor, J. A. & Stevens, C. F. J. Physiol., Lond. 213, 21–30 (1971).

    Article  CAS  Google Scholar 

  11. Neher, E. J. gen. Physiol. 58, 36–53 (1971).

    Article  CAS  Google Scholar 

  12. Thompson, S. H. J. Physiol., Lond. 265, 465–488 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Thompson, S. J. gen. Physiol. 80, 1–18 (1982).

    Article  CAS  Google Scholar 

  14. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Furukawa, T. & Matsuura, S. J. Physiol., Lond. 276, 193–209 (1978).

    Article  CAS  Google Scholar 

  16. Sand, O., Ozawa, S. & Hagiwara, S. J. comp. Physiol. 102, 13–26 (1975).

    Article  Google Scholar 

  17. Corey, D. P. & Hudspeth, A. J. Nature 281, 675–677 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Crawford, A. C. & Fettiplace, R. J. Physiol., Lond. 315, 317–338 (1981).

    Article  CAS  Google Scholar 

  19. Art, J. J., Crawford, A. C., Fettiplace, R. & Fuchs, P. A. Proc. R. Soc. B216, 377–384 (1982).

    ADS  CAS  Google Scholar 

  20. Mauro, A., Conti, F., Dodge, F. & Schor, R. J. gen. Physiol. 55, 497–523 (1970).

    Article  CAS  Google Scholar 

  21. Morris, C. & Lecar, H. Biophys. J. 35, 193–213 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Plant, R. E. Biophys. J. 21, 217–237 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Adams, P. R., Constanti, A., Brown, D. A. & Clark, R. B. Nature 296, 746–749 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, R., Hudspeth, A. Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature 304, 538–541 (1983). https://doi.org/10.1038/304538a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304538a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing