Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retrovirus genomes methylated by mammalian but not bacterial methylase are non-infectious

Abstract

The biological importance of DNA methylation for gene expression in eukaryotes is becoming increasingly evident1,2, and a direct role of methylation in gene expression has been suggested by an analysis of the infectivity of integrated retroviral genomes in a transfection assay3–5. These studies, however, did not address whether specific methylatable residues are involved in gene regulation. Methylation by sequence-specific bacterial DNA methylases has been shown to suppress the expression of some genes6–9, but not others10. To investigate the effect of methylation on gene expression without having to rely on sequence-specific methylases, a rat liver enzyme was used to methylate in vitro all C-G dinucleotides of a proviral genomic clone. This treatment reduced the biological activity of Moloney murine leukaemia virus (M-MuLV) proviral DNA by more than three orders of magnitude, whereas complete methylation of 35 HpaII sites in the same DNA had only a marginal effect. The rat methylase-induced inactivation was reversible, as treatment of recipient cells with 5-azacytidine rendered the non-infectious viral genomes biologically active. This suggests that methylation in other C-G dinucleotides than those detectable with restriction enzymes can be crucial for gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ehrlich, M. & Wang, R. Science 212, 1350–1357 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Felsenfeld, G. & McGhee, J. Nature 296, 602–603 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Stuhlmann, H., Jähner, D. & Jaenisch, R. Cell 26, 221–232 (1981).

    Article  CAS  Google Scholar 

  4. Harbers, K., Schnieke, A., Stuhlmann, H., Jähner, D. & Jaenisch, R. Proc. natn. Acad. Sci. U.S.A. 78, 7609–7613 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Chumakov, I., Stuhlmann, H., Harbers, K. & Jaenisch, R. J. Virol. 42, 1088–1098 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wigler, M., Levy, D. & Perucho, M. Cell 24, 33–40 (1981).

    Article  CAS  Google Scholar 

  7. Stein, R., Razin, A. & Cedar, H. Proc. natn. Acad. Sci. U.S.A. 79, 3418–3422 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Vardimon, L., Kressmann, A., Cedar, H., Maechler, M. & Doerfler, W. Proc. natn. Acad. Sci. U.S.A. 79, 1073–1077 (1982).

    Article  ADS  CAS  Google Scholar 

  9. McGeady, M. L., Jhappan, C., Ascione, R. & Vande Woude, G. F. Molec. cell. Biol. 3, 305–314 (1983).

    Article  CAS  Google Scholar 

  10. Hoffmann, J. et al. J. Virol. 44, 144–157 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jähner, D. & Jaenisch, R. Nature 287, 456–458 (1980).

    Article  ADS  Google Scholar 

  12. Jaenisch, R. et al. Cell 24, 519–529 (1981).

    Article  CAS  Google Scholar 

  13. Simon, D., Grunert, F., Acken, K., Döring, H. & Kröger, H. Nucleic Acids Res. 5, 2153–2167 (1978).

    Article  CAS  Google Scholar 

  14. Simon, D. et al. in Biochemistry of S-Adenosylmethionine and Related Compounds (eds Borchardt, T. & Creveling, C.) 267–273 (Macmillan, London, 1982).

    Book  Google Scholar 

  15. Shinnick, T., Lerner, R. & Sutcliffe, J. Nature 293, 543–548 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1979).

    Article  CAS  Google Scholar 

  17. Stewart, C., Stuhlmann, H., Jähner, D. & Jaenisch, R. Proc. natn. Acad. Sci. U.S.A. 79, 4098–4102 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Jähner, D. et al. Nature 298, 623–628 (1982).

    Article  ADS  Google Scholar 

  19. Creusot, F., Acs, G. & Christman, J. J. biol. Chem. 257, 2041–2048 (1982).

    CAS  PubMed  Google Scholar 

  20. Copeland, N., Zeienetz, A. & Cooper, G. Cell 17, 993–1002 (1979).

    Article  CAS  Google Scholar 

  21. Waechler, D. & Baserga, R. Proc. natn. Acad. Sci. U.S.A. 79, 1106–1110 (1982).

    Article  ADS  Google Scholar 

  22. Gruenbaum, J., Cedar, H. & Razin, A., Nature 295, 620–622 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Sano, H. & Sager, R. Proc. natn. Acad. Sci. U.S.A. 79, 3584–3588 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Bird, A., Taggart, M. & Macleod, D. Cell 26, 381–390 (1981).

    Article  CAS  Google Scholar 

  25. Sweet, R., Chao, M. & Axel, R. Cell 31, 347–353 (1982).

    Article  CAS  Google Scholar 

  26. Ott, M. et al. Cell 30, 825–833 (1982).

    Article  CAS  Google Scholar 

  27. Kruczek, I. & Doerfler, W. EMBO J. 1, 409–414 (1982).

    Article  CAS  Google Scholar 

  28. Fisher, E. & Caruthers, M. Nucleic Acids Res. 7, 401–408 (1979).

    Article  CAS  Google Scholar 

  29. Behe, M. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 78, 1619–1623 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Schnieke, A., Stuhlmann, H., Harbers, K., Chumakov, I. & Jaenisch, R. J. Virol. 45, 503–513 (1983).

    Google Scholar 

  31. Schwartz, M., Trautner, T. & Kornberg, A. J. biol. Chem. 237, 1961–1967 (1962).

    Google Scholar 

  32. Mann, M. B. & Smith, H. O. Nucleic Acids Res. 4, 4211–4221 (1977).

    Article  CAS  Google Scholar 

  33. Yoo, O. J. & Agarwal, K. L. J. biol. Chem. 255, 6445–6449 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, D., Stuhlmann, H., Jähner, D. et al. Retrovirus genomes methylated by mammalian but not bacterial methylase are non-infectious. Nature 304, 275–277 (1983). https://doi.org/10.1038/304275a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304275a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing