Abstract
The T-DNA region of Agrobacterium tumefaciens tumour-inducing plasmids of the nopaline type1 contains a gene coding for the enzyme nopaline synthase. This gene is expressed constitutively in host plant cells to which it is transferred during tumour induction2. We have exploited the regulatory elements of this gene to construct a chimaeric gene that confers antibiotic resistance on transformed plant cells. The chimaeric gene encodes the expected chimaeric transcripts in plant cells, and confers on transformed cells the ability to grow in the presence of normally lethal levels of the antibiotic G418 (ref. 3). Experiments using in vitro transformation techniques on single plant cells indicate that this antibiotic resistance can be used as a selectable marker, and can therefore be used in selecting cells transformed by T-DNA vectors that have had the genes for hormone autotrophy deleted4. Plant cells transformed by such ‘disarmed’ T-DNA vectors can be regenerated into entire plants, whose sexual progeny contain unaltered copies of the inciting T-DNA5. The availability of this dominant selectable marker should allow a wider range of experiments to be under taken using different host plants.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Leemans, J. et al. J. molec. appl. Genet. 1, 149–164 (1981).
Wullems, G. J., Molendijk, L., Ooms, G. & Schilperoort, R. A. Cell 24, 719–727 (1981).
Colbere-Garapin, F., Horodniceanu, F., Kourilsky, P. & Garapin, A.-C. J. molec. Biol. 150, 1–14 (1981).
Leemans, J. et al. J. molec. appl. Genet. 1, 149–164 (1981).
Barton, K. A., Binns, A. N., Matzke, A. J. M. & Chilton, M.-D. Cell 32, 1033–1043 (1983).
Depicker, A., Stachel, S., Dhaese, P., Zambryski, P. & Goodman, H. M. J. molec. appl. Genet. 1, 561–573 (1982).
Bevan, M., Barnes, W. M. & Chilton, M.-D. Nucleic Acids Res. 11, 369–385 (1983).
Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
Messing, J., Crea, R. & Seeburg, P. H. Nucleic Acids Res. 9, 309–323 (1981).
Matzke, A. J. M. & Chilton, M.-D. J. molec. appl. Genet. 1, 39–49 (1981).
Oka, A., Sugisaki, H. & Takanami, M. J. molec. Biol. 147, 217–226 (1981).
de Framond, A. J., Barton, K. A. & Chilton, M.-D. Bio/Technology 1, 262–269 (1983).
Rothstein, S. J., Jorgenson, R. A., Postle, K. & Reznikoff, W. S. Cell 19, 795–805 (1980).
Auerswald, E. A., Ludwig, G. & Schaller, H. Cold Spring Harb. Symp. quant. Biol. 45, 107–113 (1980).
Holsters, M. et al. Molec. gen. Genet. 163, 181–187 (1978).
Murashige, T. & Skoog, F. Pl. Physiol. 15, 473–497 (1962).
Meins, F. & Binns, A. Proc. natn. Acad. Sci. U.S.A. 74, 2928–2932 (1977).
Chilton, M.-D. et al. Nature 295, 432–434 (1982).
Southern, E. M. J. molec. Biol. 98, 503–517 (1975).
Maniatis, T., Jeffrey, A. & Kleid, D. G. Proc. natn. Acad. sci. U.S.A. 72, 1184–1188 (1975).
Depicker, A. et al. Plasmid 3, 193–211 (1980).
Rave, N., Ckvenjakov, R. & Boedtker, H. Nucleic Acids Res. 6, 3559–3567 (1979).
Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1981).
Bevan, M. W. & Chilton, M.-D. J. molec. appl. Genet. 1, 539–546 (1982).
Wullems, G. J., Molendijk, L., Ooms, G. & Schilperoort, R. A. Proc. natn. Acad. Sci. U.S.A. 78, 4344–4348 (1981).
Green, M. R. & Roeder, R. G. Cell 22, 231–242 (1980).
Bolivar, F. Gene 4, 121–136 (1978).
Ditta, G., Stansfield, S., Corbin, D. & Helinski, D. Proc. natn. Acad. Sci. U.S.A. 77, 7347–7351 (1980).
Thomashow, M. F. et al. Proc. natn. Acad. Sci. U.S.A. 77, 6448–6452 (1980).
Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).
Herrera-Estrella, L., Depicker, A., Van Montagu, M. & Schell, J. Nature 303, 209–213 (1983).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bevan, M., Flavell, R. & Chilton, MD. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184–187 (1983). https://doi.org/10.1038/304184a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/304184a0
This article is cited by
-
Sulfadiazine and phosphinothricin selection systems optimised for the transformation of tobacco BY-2 cells
Plant Cell Reports (2023)
-
Maize transformation: history, progress, and perspectives
Molecular Breeding (2021)
-
History of plant genetic mutations ± human influences
In Vitro Cellular & Developmental Biology - Plant (2021)
-
Genome editing reagent delivery in plants
Transgenic Research (2021)
-
Impacts of the regulatory environment for gene editing on delivering beneficial products
In Vitro Cellular & Developmental Biology - Plant (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.