Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitrate respiration in primitive eukaryotes

Abstract

Nitrate respiration plays an important part in the global nitrogen cycle by initiating a chain of biologically mediated reductions of nitrogen oxides1,2. It involves the substitution of nitrate for oxygen as a terminal electron acceptor, occurs only in the absence of oxygen and is assumed to be performed only by prokaryotic organisms3,4. Here we present evidence for nitrate respiration in eukaryotes. Some Protozoa are known to be capable of living in anoxic water in lakes5,6; we show that in at least one genus of Protozoa (Loxodes) this capacity can be attributed to a dissimilatory nitrate reductase located within the inner mitochondrial membrane. The general acceptance of Loxodes as an extremely primitive protozoon7 strengthens the theory that nitrate-respiring bacteria are plausible ancestors of animal mitochondria8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zumft, W. G. & Cardenas, J. Naturwissenschaften 66, 81–88 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Vincent, W. F., Downes, M. T. & Vincent, C. L. Nature 292, 618–620 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Carlisle, M. J. in The Eukaryotic Microbial Cell (eds Gooday, G. W., Lloyd, D. & Trinci, A. P. J.) 1–40 (Cambridge University Press, Cambridge, 1980).

    Google Scholar 

  4. Stouthamer, A. H., van't Riet, J. & Oltman, L. F. in Diversity of Bacterial Respiratory Systems Vol. 2 (ed. Knowles, C. J.) 19–48 (CRC, Boca Raton, 1980).

    Google Scholar 

  5. Finlay, B. J. J. gen. Microbiol. 123, 173–178 (1981).

    Google Scholar 

  6. Goulder, R. Hydrobiologia 72, 131–158 (1980).

    Article  Google Scholar 

  7. Corliss, J. D. & Hartwig, E. Mikrofauna Meeresboden 61, 65–88 (1977).

    Google Scholar 

  8. John, P. & Whatley, F. R. Nature 254, 495–498 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Schwartz, R. M. & Dayhoff, M. D. Science 199, 395–403 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Cohen, Y. Nature 272, 235–237 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Rieder, N., Ott, H. A., Pfundstein, P. & Schoch, R. J. Protozool. 29, 15–18 (1982).

    Article  CAS  Google Scholar 

  12. Smillie, R. M. in The Biology of Euglena Vol. 2 (ed. Buetow, D. E.) 1–54 (Academic, London, 1968).

    Google Scholar 

  13. Kuntzel, H. & Kochel, H. G. Nature 293, 751–755 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Weibel, E. R. Int. Rev. Cytol. 26, 235–302 (1969).

    Article  CAS  Google Scholar 

  15. Williams, M. A. Quantitative Methods in Biology (North-Holland, Amsterdam, 1977).

    Google Scholar 

  16. Horsley, R. W. in Techniques for the Study of Mixed Populations (eds Lovelock, D. W. & Davies, R.) 71–87 (Academic, London, 1978).

    Google Scholar 

  17. Jones, J. G. Scient. Publs Freshwater Biol. Ass. No. 39, 19–31 (1979).

  18. Luria, S. E. in The Bacteria Vol. 1 (eds Gunsalus, I. C. & Stanier, R. Y.) 1–34 (Academic, London, 1960).

    Google Scholar 

  19. Van'T Riet, J., Stouthamer, A. H. & Planta, R. J. J. Bact. 96, 1455–1464 (1968).

    CAS  Google Scholar 

  20. Boonstra, J., Huttunen, M. T. & Konings, W. N. J. biol Chem. 250, 6792–6798 (1975).

    CAS  PubMed  Google Scholar 

  21. Huisman, L. A. & Konings, W. in Sourcebook of Experiments for the Teaching of Microbiology (eds Primrose, S. B. & Wardlow, A. C.) 224–232 (Academic, London, 1982).

    Google Scholar 

  22. Davison, W. Freshwater Biol. 7, 393–401 (1977).

    Article  CAS  Google Scholar 

  23. Cunnningham, C. R. & Davison, W. Freshwater Biol. 10, 413–418 (1980).

    Article  Google Scholar 

  24. Mackereth, F. J. H., Heron, J. & Talling, J. F. Scient. Publs Freshwater Biol. Ass. 36, 69–77 (1978).

    Google Scholar 

  25. Jones, J. G. J. gen. Microbiol. 115, 27–35 (1979).

    Article  CAS  Google Scholar 

  26. Lowe, R. H. & Evans, H. J. Biochim. biophys. Acta 85, 377–389 (1969).

    Google Scholar 

  27. Bobyleva, N. N. Tsitologiya 23, 1073–1077 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finlay, B., Span, A. & Harman, J. Nitrate respiration in primitive eukaryotes. Nature 303, 333–336 (1983). https://doi.org/10.1038/303333a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303333a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing