Abstract
The glandular kallikrein gene family comprises 25–30 highly homologous genes that encode specific proteases involved in the processing of biologically active peptides. In the mouse all the members of this family are closely linked on chromosome 7. The 9.5-kilobase nucleotide sequence of a mouse genomic clone contains one complete kallikrein gene (mGK-1), which is expressed in the male mouse submaxillary gland, and the 3′ end of another (mGK-2). Differences in the coding potential of these genes and the amino acid sequences of other known kallikreins seem to be functionally related to the substrate specificity of the different enzymes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Hypophysectomy and hormonal therapy modulate mK1-immunoreactive duct cells in the mice sublingual glands
Journal of Molecular Histology Open Access 22 August 2008
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Frey, P., Forand, R., Maciag, T. & Shooter, E. M. Proc. natn. Acad. Sci. U.S.A. 76, 6294–6298 (1979).
Berger, E. A. & Shooter, E. M. Proc. natn. Acad. Sci. U.S.A. 74, 3647–3651 (1977).
Schachter, M. Pharmac. Rev. 31, 1–17 (1980).
Schachter, M. Physiol. Rev. 49, 519–547 (1969).
Orstavik, T. B. J. Histochem. Cytochem. 28, 881–889 (1980).
Bothwell, M. A., Wilson, W. H. & Shooter, E. M. J. biol. Chem. 254, 7287–7294 (1979).
Pasquini, F. et al. Expl Cell Res. 86, 233–236 (1974).
Silverman, R. E. thesis, Washington Univ., St Louis (1977).
Thomas, K. A., Baglan, N. C. & Bradshaw, R. A. J. biol. Chem. 256, 9156–9166 (1981).
Naughton, M. A. et al. Expl Cell Res. 57, 95–103 (1969).
Zangheri, E. O. et al. Expl Hemat. 5, 237–240 (1977).
Attardi, O. G., Schlesinger, M. J. & Schlesinger, S. Science 156, 1253–1255 (1967).
Weimar, V. L. & Haraguchi, K. H. Physiol. Chem. Phys. 7, 7–21 (1975).
Richards, R. I. et al. J. biol. Chem. 257, 2758–2761 (1982).
Hiramatsu, M., Hatakeyama, K., Kumegawa, M., Yajima, T. & Minami, N. Experientia 37, 1068–1069 (1981).
Cox, D. R., Sawicki, J. A., Yee, D., Appella, E. & Epstein, C. J. Proc. natn. Acad. Sci. U.S.A. 79, 1930–1934 (1982).
Womack, J. E. in Genetic Maps Vol. 1 (ed. O'Brien, S. J.) 218–224 (NIH, Maryland, 1980).
Skow, L. C. Genetics 90, 713–724 (1978).
Liu, C.-P., Tucker, P. W., Mushinski, J. F. & Blattner, F. R. Science 209, 1348–1353 (1980).
Weaver, R. F. & Weissman, C. Nucleic Acids Res. 5, 1174–1193 (1979).
Hagenbuchle, O., Bovery, R. & Young, R. A. Cell 21, 179–187 (1980).
Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. & Steitz, J. A. Nature 283, 220–224 (1980).
Proudfoot, N. J. & Brownlee, C. G. Nature 263, 211–214 (1976).
Corden, J. et al. Science 209, 1406–1414 (1980).
Grosscheldl, R. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 1432–1436 (1980).
Benoist, C., O'Hare, K., Breathnach, R. & Chambon, P. Nucleic Acids Res. 8, 127–142 (1980).
MacDonald, R. J., Stary, S. J. & Swift, G. H. J. biol. Chem. 257, 9724–9732 (1982).
Young, C. L., Barker, W. C., Tomaselli, C. M. & Dayhoff, M.O. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 73–93 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).
Krieger, M., Kay, L. M. & Stroud, R. M. J. molec. Biol. 83, 209–230 (1974).
Tschesche, H. et al. in Kinins II: Biochemistry, Pathophysiology and Clinical Aspects (eds Fujii, S., Moriya, H. & Suzuki, T.) 245–260 (Plenum, New York, 1979).
Stroud, R. M., Krieger, M., Koeppell, R. E., Kossiakoff, A. A. & Chambers, J. L. in Proteases and Biological Control (eds Reich, E., Rifkin, D. B. & Shaw, E.) 13–32 (Cold Spring Harbor Laboratory, New York, 1975).
Hartley, B. S. & Shotton, D. M. in The Enzymes Vol. 3 (ed. Boyer, P. D.) 323–353 (Academic, New York, 1971).
Southern, E. M. J. molec. Biol. 98, 503–517 (1975).
Taylor, J. M., Illmensee, R. & Summers, J. Biochim. biophys. Acta 442, 324–330 (1976).
Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).
Sleigh, M. J., Both, G. W. & Brownlee, G. G. Nucleic Acids Res. 6, 1309–1321 (1979).
Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).
Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
Vieira, J. & Messing, J. Gene (in the press).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mason, A., Evans, B., Cox, D. et al. Structure of mouse kallikrein gene family suggests a role in specific processing of biologically active peptides. Nature 303, 300–307 (1983). https://doi.org/10.1038/303300a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/303300a0
This article is cited by
-
The lupus-susceptibility gene kallikrein downmodulates antibody-mediated glomerulonephritis
Genes & Immunity (2009)
-
Hypophysectomy and hormonal therapy modulate mK1-immunoreactive duct cells in the mice sublingual glands
Journal of Molecular Histology (2008)
-
Cellular mechanisms of estrogen-and dopamine-induced control of glandular kallikrein in the anterior pituitary of the rat
Cell and Tissue Research (1993)
-
Comparative map for mice and humans
Mammalian Genome (1992)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.