Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of mouse kallikrein gene family suggests a role in specific processing of biologically active peptides

Abstract

The glandular kallikrein gene family comprises 25–30 highly homologous genes that encode specific proteases involved in the processing of biologically active peptides. In the mouse all the members of this family are closely linked on chromosome 7. The 9.5-kilobase nucleotide sequence of a mouse genomic clone contains one complete kallikrein gene (mGK-1), which is expressed in the male mouse submaxillary gland, and the 3′ end of another (mGK-2). Differences in the coding potential of these genes and the amino acid sequences of other known kallikreins seem to be functionally related to the substrate specificity of the different enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frey, P., Forand, R., Maciag, T. & Shooter, E. M. Proc. natn. Acad. Sci. U.S.A. 76, 6294–6298 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Berger, E. A. & Shooter, E. M. Proc. natn. Acad. Sci. U.S.A. 74, 3647–3651 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Schachter, M. Pharmac. Rev. 31, 1–17 (1980).

    Google Scholar 

  4. Schachter, M. Physiol. Rev. 49, 519–547 (1969).

    Article  Google Scholar 

  5. Orstavik, T. B. J. Histochem. Cytochem. 28, 881–889 (1980).

    Article  CAS  Google Scholar 

  6. Bothwell, M. A., Wilson, W. H. & Shooter, E. M. J. biol. Chem. 254, 7287–7294 (1979).

    CAS  PubMed  Google Scholar 

  7. Pasquini, F. et al. Expl Cell Res. 86, 233–236 (1974).

    Article  CAS  Google Scholar 

  8. Silverman, R. E. thesis, Washington Univ., St Louis (1977).

  9. Thomas, K. A., Baglan, N. C. & Bradshaw, R. A. J. biol. Chem. 256, 9156–9166 (1981).

    CAS  PubMed  Google Scholar 

  10. Naughton, M. A. et al. Expl Cell Res. 57, 95–103 (1969).

    Article  CAS  Google Scholar 

  11. Zangheri, E. O. et al. Expl Hemat. 5, 237–240 (1977).

    CAS  Google Scholar 

  12. Attardi, O. G., Schlesinger, M. J. & Schlesinger, S. Science 156, 1253–1255 (1967).

    Article  ADS  CAS  Google Scholar 

  13. Weimar, V. L. & Haraguchi, K. H. Physiol. Chem. Phys. 7, 7–21 (1975).

    CAS  PubMed  Google Scholar 

  14. Richards, R. I. et al. J. biol. Chem. 257, 2758–2761 (1982).

    CAS  PubMed  Google Scholar 

  15. Hiramatsu, M., Hatakeyama, K., Kumegawa, M., Yajima, T. & Minami, N. Experientia 37, 1068–1069 (1981).

    Article  CAS  Google Scholar 

  16. Cox, D. R., Sawicki, J. A., Yee, D., Appella, E. & Epstein, C. J. Proc. natn. Acad. Sci. U.S.A. 79, 1930–1934 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Womack, J. E. in Genetic Maps Vol. 1 (ed. O'Brien, S. J.) 218–224 (NIH, Maryland, 1980).

    Google Scholar 

  18. Skow, L. C. Genetics 90, 713–724 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, C.-P., Tucker, P. W., Mushinski, J. F. & Blattner, F. R. Science 209, 1348–1353 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Weaver, R. F. & Weissman, C. Nucleic Acids Res. 5, 1174–1193 (1979).

    Google Scholar 

  21. Hagenbuchle, O., Bovery, R. & Young, R. A. Cell 21, 179–187 (1980).

    Article  CAS  Google Scholar 

  22. Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. & Steitz, J. A. Nature 283, 220–224 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Proudfoot, N. J. & Brownlee, C. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Corden, J. et al. Science 209, 1406–1414 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Grosscheldl, R. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 1432–1436 (1980).

    Article  ADS  Google Scholar 

  26. Benoist, C., O'Hare, K., Breathnach, R. & Chambon, P. Nucleic Acids Res. 8, 127–142 (1980).

    Article  CAS  Google Scholar 

  27. MacDonald, R. J., Stary, S. J. & Swift, G. H. J. biol. Chem. 257, 9724–9732 (1982).

    CAS  PubMed  Google Scholar 

  28. Young, C. L., Barker, W. C., Tomaselli, C. M. & Dayhoff, M.O. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 73–93 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).

    Google Scholar 

  29. Krieger, M., Kay, L. M. & Stroud, R. M. J. molec. Biol. 83, 209–230 (1974).

    Article  CAS  Google Scholar 

  30. Tschesche, H. et al. in Kinins II: Biochemistry, Pathophysiology and Clinical Aspects (eds Fujii, S., Moriya, H. & Suzuki, T.) 245–260 (Plenum, New York, 1979).

    Book  Google Scholar 

  31. Stroud, R. M., Krieger, M., Koeppell, R. E., Kossiakoff, A. A. & Chambers, J. L. in Proteases and Biological Control (eds Reich, E., Rifkin, D. B. & Shaw, E.) 13–32 (Cold Spring Harbor Laboratory, New York, 1975).

    Google Scholar 

  32. Hartley, B. S. & Shotton, D. M. in The Enzymes Vol. 3 (ed. Boyer, P. D.) 323–353 (Academic, New York, 1971).

    Google Scholar 

  33. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  34. Taylor, J. M., Illmensee, R. & Summers, J. Biochim. biophys. Acta 442, 324–330 (1976).

    Article  CAS  Google Scholar 

  35. Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    Article  ADS  CAS  Google Scholar 

  36. Sleigh, M. J., Both, G. W. & Brownlee, G. G. Nucleic Acids Res. 6, 1309–1321 (1979).

    Article  CAS  Google Scholar 

  37. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  38. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  39. Vieira, J. & Messing, J. Gene (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, A., Evans, B., Cox, D. et al. Structure of mouse kallikrein gene family suggests a role in specific processing of biologically active peptides. Nature 303, 300–307 (1983). https://doi.org/10.1038/303300a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303300a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing