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Chaos, a problem for experiment 
The study of chaotic behaviour has thrown up a new vocabulary, and some intriguing concepts. But 
recognizing chaos experimentally may be more difficult than has been supposed. 

IF thinking the unthinkable has become 
respectable, surely defining the undefin
able is a goal at which to strive? That, no 
doubt, is the spirit in which Li and Yorke 
embarked in 1975 on their already classical 
definition of chaos (Am. Math. Monthly 
82, 985; 1975). The concept of chaos has 
since then emerged essentially distinct from 
the most familiar physical manifestation of 
disorderliness, randomness as made 
manifest in brownian motion. The interest, 
and importance, of what is now called 
chaos is that it arises as a consequence of 
strictly deterministic processes. Everything 
is calculable, and thus in principle predic
table, but our ways of comprehending 
chaos are poorly developed. So by what 
conceit can Gribogi, Ottand and Yorke 
now claim (Phys. Rev. Lett. 50, 935; 1983) 
to have identified a novel kind of chaos? 

Nobody denies the underlying practical 
importance of chaos in dynamical systems. 
In calculations of the evolution of meteo
rological patterns in the Earth's at
mosphere, for example, experience in the 
past few years has shown that prediction 
and reality diverge after 10 days or so, not 
so much because the underlying dynamical 
system is incalculable but because the pat
tern of evolution is extremely sensitive to 
the initial conditions, which are even now 
only poorly known. Chaos is also common 
in biology. Students of population 
dynamics, for example, have to their sur
prise now recognized that when the sizes of 
living populations fluctuate widely, even 
wildly, from one season to the next, the 
underlying explanation may again be some 
kind of chaotic behaviour. 

Why is all this comprehended only with 
such difficulty? Part of the problem is that 
we are trapped by what Thomas S. Kuhn 
would no doubt call the paradign of newto
nian calculus. 

Take an inclined surface (not necessarily 
a plane) bounded by two edges at the 
"top" and "bottom" of the incline, and 
conduct the simple experiment in which 
billiard balls are allowed to roll from 
various points A on the upper edge. The 
objective is to establish the relationship 
between the set of points A along the upper 
edge and the set of points B along the lower 
edge at which the billiard balls arrive. 
Ordinarily, if the inclined surface is 
reasonably smooth, to each A there will be 
a distinct B, so that the experiment will 
establish a mapping of the set of points A 
onto the set B, which is tantamount to say
ing that there is a functional relationship 
between them. Formally, B = f(A), and it 
is possible to calculate f from the known 
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shape of the surface and the laws of mo
tion. 

Our common expectation is that if a 
billiard ball starts not from A but from the 
nearby point A+ oA, it will finish at 
B + oB, near in some sense to B. Indeed, it 
is also natural to expect that A and oB will 
be related to each other in the sense that the 
ratio 6A/6B will be finite and that as oA 
becomes smaller (or tends to zero), so too 
will oB and in such a way that the ratio 
6B/6A approaches some well defined 
limit, which is the differential coefficient of 
the function f. 

This, the common expectation, should 
however be amply falsified by another 
equally common experience - that of the 
old-fashioned pinball machine in which an 
inclined plane is studded with an array of 
metal obstacles. The mapping of A onto B 
is then by no means orderly. Patches of the 
upper edge may be mapped onto the lower 
edge in such a way that they are jumbled up 
and may even overlap (so that it is no longer 
possible unambiguously to infer A from B). 
It may even be that oBis large even when 
oA is small, so that the functionf(A) will 
not be everywhere differentiable. 

In the past eight years, much has been 
learned about the behaviour of chaotic 
systems by the study of simple mechanical 
and mathematical models. At the same 
time, there has emerged a novel and in
triguing vocabulary. Bifurcation is widely 
used, not so much for the effect of a pinball 
pin on the motion of a rolling sphere down 
an inclined plane but for the common 
observation that changing the parameters 
specifying a potentially chaotic system will 
usually force it into one of two alternative 
conditions depending on the initial condi
tions. "Attractor" is another old word us
ed in a new guise to refer to those states that 
frequently crop up even in a chaotic 
system. And then there are ''strange aurae
tor" states of the system, determined by 
certain sets of initial conditions, in which 
chaos supervenes. Whimsically, the sets of 
initial conditions are called "basins". 

What Yorke and his associates have now 
done is to construct a series of mathe
matical models of a chaotic system which 
has unexpected properties. The simplest 
case is that in which the positions of points 
in the complex plane are defined by the pair 
Of recurrence relations 9 n + 1 = 2 9 n mod2n 
and Zn+l = Azn + cos 9n where A is a 
number between 1 and 2. (The instruction 
mod2n simply implies that one chooses 
some initial value of the angle, doubles it 
and keeps only the part of it less than 2n.) 
The question, as with the observation of 

spheres in a pinball machine, is to know 
how the set of all possible initial conditions 
is related to the eventual outcome of the 
recursion, and a few simple properties of 
the system are clear. If, for example, the 
recursion is started off with an angle that is 
zero, and if the initial value of z is say I, the 
value of Zn will beAn, which diverges to in
finity because A is itself greater than I. In
deed, almost all sets of initial conditions 
end up with z equal to plus or minus infini
ty, which are thus attractors for the system. 
The interesting question is to define the 
range of starting conditions from which 
some other outcome is possible. 

Even with this simple model of chaos, 
some remarkable circumstances arise. 
First, the boundary of the basin is nowhere 
differentiable which, on the analogy of the 
pinball machine, implies that no B + 6 B 
lies near B. Worse still, the length of the 
boundary, which is some kind of curve 
specifying z as a function of angle and 
which would then be expected to have a 
length of the order of 2n, turns out to have 
an infinite length - a property diagnostic of 
a set of points with non-integral or "fractal" 
dimension. Yorke and his colleagues pro
mise to show evidence that the fractal 
dimension is, indeed, 2- (lnA)/{ln 2). 

An elaboration of the simple recurrence 
relation leads to still more surprising conse
quences. With the same definition of the 
angles, but with Zn+ 1 defined as 
az n + z n 2 + (3 cos e n• the boundaries of the 
basins again have fractal dimensions. 
Because of the z2 term, every divergent 
point now diverges to plus infinity. For 
suitable choices of the parameters, there is 
also a set of starting conditions for which 
true chaotic behaviour supervenes. By a 
suitable choice of the parameters, 
however, it is possible to banish altogether 
truly chaotic behaviour but Yorke and his 
associates now report that even then, the 
semblance of it persists. They have been 
able to describe the behaviour of these 
systems only by numerical methods, but 
they have found that even when chaos is 
not strictly speaking possible, as many as 
107 steps in the iteration of their formulae 
may be necessary before the influence of 
the attractor at infinity is able to take 
over. 

The practical importance of this result is 
considerable, especially in the now 
absorbing question whether it is possible to 
distinguish experimentally between chaos 
and statistical randomness. For if quasi
chaos can persist for such long periods, 
telling the difference may in some circum
stances be impractical. D 
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