Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant

Abstract

Recently, it has been demonstrated that a single point mutation is responsible for the acquisition of transforming properties by the EJ and T24 human bladder carcinoma gene1–3. The point mutation consists of the conversion of guanine into thymine, which results in the replacement of a glycine by a valine at position 12 of the p21 protein encoded by the EJ and T24 genes. Sequence data of retroviral analogues of the p21 protein1–5 also indicate the importance for a glycine residue at position 12 in normal p21. Comparison of the sequence of the 37 N-terminal residues of the normal human p21 protein with the sequence of the dinucleotide-binding βαβ unit in a group of structurally related enzymes, suggests that these residues of p21 fold into a very similar unit which is also involved in binding a nucleotide. We present here a three-dimensional model of the p21 βαβ unit which explains directly why glycine at position 12 cannot be replaced by another residue without altering the nucleotide-binding properties of p21.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tabin, C. J. et al. Nature 300, 143–149 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. Nature 300, 149–152 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Taparowsky, E. et al. Nature 300, 762–765 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Dhar, R. et al. Science 217, 934–936 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Tsuchida, N., Ryder, T. & Ohtsubo, E. Science 217, 937–939 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Scolnick, E. M., Papageorge, A. G. & Shih, T. Y. Proc. natn. Acad. sci. U.S.A. 76, 5355–5359 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Shih, T. Y., Papageorge, A. G., Stokes, P. E., Weeks, M. O. & Scolnick, E. M. Nature 287, 686–691 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Papageorge, A., Lowy, D. & Scolnick, E. M. J. Virol. 44, 509–519 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bedarkar, S., Turnell, W. G., Blundell, T. L. & Schwabe, C. Nature 270, 449–451 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Isaacs, N. et al. Nature 271, 278–281 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Blundell, T. L., Bedarkar, S., Rinderknecht, E. & Humbel, R. E. Proc. natn. Acad. sci. U.S.A. 75, 180–184 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Ohlsson, I., Nordström, B. & Brändén, C. I. J. molec. Biol. 89, 339–354 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Rossmann, M. G., Moras, D. & Olsen, K. W. Nature 250, 194–199 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Schulz, G. E., Schirmer, R. H. & Pai, E. F. J. molec. Biol. 160, 287–308 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Hofsteenge, J. et al. Eur. J. Biochem. 113, 141–150 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Hol, W. G. J., Van Duijnen, P., & Berendsen, H. J. C. Nature 273, 443–446 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Brandenburg, N. P., Dempsey, S., Dijkstra, B. W., Lijk, L. J. & Hol, W. G. J. J. appl. Crystallogr. 14, 274–279 (1981).

    Article  CAS  Google Scholar 

  18. Wierenga, R. K., De Jong, R. J., Kalk, K. H., Hol, W. G. J. & Drenth, J. J. molec. Biol. 131, 55–73 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. Weijer, W. J., Hofsteenge, J., Vereijken, J. M., Jekel, P. A. & Beinbema, J. J. Biochim. Biophys. Acta 704, 385–388 (1982).

    Article  CAS  Google Scholar 

  20. Müller, F. & Van Berkel, W. J. H. Eur.J. Biochem. 128, 21–27 (1982).

    Article  PubMed  Google Scholar 

  21. Samama, J. P., Zeppezauer, E., Biellmann, J. F. & Bränden, C. I. Eur. J. Biochem. 81, 403–409 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Cooper, G. M. Science 218, 801–806 (1982).

    Article  ADS  Google Scholar 

  23. DeFeo, D. et al. Proc. natn. Acad. Sci. U.S.A. 78, 3328–3332 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Chang, E. H., Furth, M. E., Scolnick, E. M. & Lowy, D. R. Nature 297, 479–483 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Gay, N. J. & Walker, J. E. Nature 301, 262–264 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. EMBO J. 1, 945–951 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pai, E. F., Sachsenheimer, W., Schirmer, R. H. & Schulz, G. E. J. molec. Biol. 114, 37–45 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. White, J. L. et al. J. molec. Biol. 102, 759–779 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Eklund, H. et al. J. molec. Biol. 146, 561–587 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Moras, D. et al. J. biol. Chem. 250, 9137–9162 (1975).

    CAS  PubMed  Google Scholar 

  31. Krauth-Sieghel, R. L. et al. Eur. J. Biochem. 121, 259–267 (1982).

    Article  Google Scholar 

  32. Taylor, S. S. J. biol. Chem. 252, 1799–1806 (1977).

    CAS  PubMed  Google Scholar 

  33. Jörnvall, H. Eur. J. Biochem. 16, 25–40 (1970).

    Article  PubMed  Google Scholar 

  34. Davidson, B. E., Sajgó, M., Noller, H. F. & Harris, J. I. Nature 216, 1181–1185 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Samama, J. P., Wrixon, A. D. & Biellmann, J. F. Eur. J. Biochem. 118, 479–486 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wierenga, R., Hol, W. Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302, 842–844 (1983). https://doi.org/10.1038/302842a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302842a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing