Letter | Published:

Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands

Naturevolume 302pages827829 (1983) | Download Citation

Subjects

Abstract

Nervous or hormonal stimulation of many exocrine glands evokes release of cellular K+ (ref. 1), as originally demonstrated in mammalian salivary glands2,3, and is associated with a marked increase in membrane conductance1,4,5. We now demonstrate directly, by using the patch-clamp technique6, the existence of a K+ channel with a large conductance localized in the basolateral plasma membranes of mouse and rat salivary gland acinar cells. The K+ channel has a conductance of 250 pS in the presence of high K+ solutions on both sides of the membrane. Although mammalian exocrine glands are believed not to possess voltage-activated channels1,7, the probability of opening the salivary gland K+ channel was increased by membrane depolarization. The frequency of channel opening, particularly at higher membrane potentials, was increased markedly by elevating the internal ionized Ca2+ concentration, as previously shown for high-conductance K+ channels from cells of neural origin8–10. The Ca2+ and voltage-activated K+ channel explains the marked cellular K+ release that is characteristically observed when salivary glands are stimulated to secrete.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Petersen, O. H. The Electrophysiology of Gland Cells (Academic, London, 1980).

  2. 2

    Burgen, A. S. V. J. Physiol., Lond. 132, 20–39 (1956).

  3. 3

    Petersen, O. H. J . Physiol., Lond. 208, 431–447 (1970).

  4. 4

    Nishiyama, A. & Petersen, O. H. J. Physiol., Lond. 242, 173–188 (1974).

  5. 5

    Ginsborg, B. L., House, C. R. & Silinsky, E. J. Physiol., Lond. 236, 723–731 (1974).

  6. 6

    Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

  7. 7

    Ginsborg, B. L. & House, C. R. A. Rev. Biophys. Bioengng 9, 55–80 (1980).

  8. 8

    Marty, A. Nature 291, 497–500 (1981).

  9. 9

    Pallotta, B. S., Magleby, K. L. & Barrett, J. N. Nature 293, 471–474 (1981).

  10. 10

    Barrett, J. N., Magleby, K. L. & Palotta, B. S. J. Physiol., Lond. 331, 211–230 (1982).

  11. 11

    Maruyama, Y. & Petersen, O. H. Nature 299, 159–161 (1982).

  12. 12

    Maruyama, Y. & Petersen, O. H. Nature 300, 61–63 (1982).

  13. 13

    Pedersen, G. L. & Petersen, O. H. J. Physiol., Lond. 234, 217–227 (1973).

  14. 14

    Wakui, M. & Nishiyama, A. Pflügers Arch. ges. Physiol. 386, 251–259 (1980).

  15. 15

    Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

  16. 16

    Yellen, G. Nature 296, 357–359 (1982).

  17. 17

    Putney, J. W. Pharmac. Rev. 30, 209–245 (1979).

  18. 18

    Gallacher, D. V. & Petersen, O. H. J. Physiol., Lond. 305, 43–57 (1980).

  19. 19

    Frizzell, R. A., Field, M. & Schultz, S. G. Am. J. Physiol. 236, F1–F8 (1979).

  20. 20

    Chipperfield, A. R. Nature 286, 281–282 (1980).

  21. 21

    Greger, R. & Schlatter, E. Pflügers Arch. ges. Physiol. 392, 92–94 (1981).

  22. 22

    Musch, M. W. et al. Nature 300, 351–353 (1982).

Download references

Author information

Affiliations

  1. The Physiological Laboratory, University of Liverpool, Brownlow Hill, PO Box 147, Liverpool, L69 3BX, UK

    • Y. Maruyama
    • , D. V. Gallacher
    •  & O. H. Petersen

Authors

  1. Search for Y. Maruyama in:

  2. Search for D. V. Gallacher in:

  3. Search for O. H. Petersen in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/302827a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.