Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands

Abstract

Nervous or hormonal stimulation of many exocrine glands evokes release of cellular K+ (ref. 1), as originally demonstrated in mammalian salivary glands2,3, and is associated with a marked increase in membrane conductance1,4,5. We now demonstrate directly, by using the patch-clamp technique6, the existence of a K+ channel with a large conductance localized in the basolateral plasma membranes of mouse and rat salivary gland acinar cells. The K+ channel has a conductance of 250 pS in the presence of high K+ solutions on both sides of the membrane. Although mammalian exocrine glands are believed not to possess voltage-activated channels1,7, the probability of opening the salivary gland K+ channel was increased by membrane depolarization. The frequency of channel opening, particularly at higher membrane potentials, was increased markedly by elevating the internal ionized Ca2+ concentration, as previously shown for high-conductance K+ channels from cells of neural origin8–10. The Ca2+ and voltage-activated K+ channel explains the marked cellular K+ release that is characteristically observed when salivary glands are stimulated to secrete.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Petersen, O. H. The Electrophysiology of Gland Cells (Academic, London, 1980).

    Google Scholar 

  2. Burgen, A. S. V. J. Physiol., Lond. 132, 20–39 (1956).

    Article  CAS  Google Scholar 

  3. Petersen, O. H. J . Physiol., Lond. 208, 431–447 (1970).

    Article  CAS  Google Scholar 

  4. Nishiyama, A. & Petersen, O. H. J. Physiol., Lond. 242, 173–188 (1974).

    Article  CAS  Google Scholar 

  5. Ginsborg, B. L., House, C. R. & Silinsky, E. J. Physiol., Lond. 236, 723–731 (1974).

    Article  CAS  Google Scholar 

  6. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  7. Ginsborg, B. L. & House, C. R. A. Rev. Biophys. Bioengng 9, 55–80 (1980).

    Article  CAS  Google Scholar 

  8. Marty, A. Nature 291, 497–500 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Pallotta, B. S., Magleby, K. L. & Barrett, J. N. Nature 293, 471–474 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Barrett, J. N., Magleby, K. L. & Palotta, B. S. J. Physiol., Lond. 331, 211–230 (1982).

    Article  CAS  Google Scholar 

  11. Maruyama, Y. & Petersen, O. H. Nature 299, 159–161 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Maruyama, Y. & Petersen, O. H. Nature 300, 61–63 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Pedersen, G. L. & Petersen, O. H. J. Physiol., Lond. 234, 217–227 (1973).

    Article  CAS  Google Scholar 

  14. Wakui, M. & Nishiyama, A. Pflügers Arch. ges. Physiol. 386, 251–259 (1980).

    Article  CAS  Google Scholar 

  15. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Putney, J. W. Pharmac. Rev. 30, 209–245 (1979).

    Google Scholar 

  18. Gallacher, D. V. & Petersen, O. H. J. Physiol., Lond. 305, 43–57 (1980).

    Article  CAS  Google Scholar 

  19. Frizzell, R. A., Field, M. & Schultz, S. G. Am. J. Physiol. 236, F1–F8 (1979).

    Article  CAS  Google Scholar 

  20. Chipperfield, A. R. Nature 286, 281–282 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Greger, R. & Schlatter, E. Pflügers Arch. ges. Physiol. 392, 92–94 (1981).

    Article  CAS  Google Scholar 

  22. Musch, M. W. et al. Nature 300, 351–353 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, Y., Gallacher, D. & Petersen, O. Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands. Nature 302, 827–829 (1983). https://doi.org/10.1038/302827a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302827a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing