Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Monopole heat

Abstract

The most stringent astrophysical limit on the flux of superheavy magnetic monopoles is based on the energy released when monopoles captured by a neutron star catalyse nucleon decay within the neutron star, and is: FG10−22 cm−2 sr−1 s−1. This, and other astrophysical bounds, are bounds on the average flux of monopoles in the Galaxy, not on the local flux of monopoles. Dimopoulos et al.1 have pointed out that the local flux could be many orders-of-magnitude larger than the average flux. Monopoles moving more slowly than about 3×10−5 c (1016 GeV m−1) are stopped in the Earth. Inside the Earth they catalyse nucleon decay, resulting in the release of heat. A bound on the local flux of monopoles moving more slowly than 3 × 10−5 c (1016 GeV m−1), F10−21 cm−2sr−1 s−1, is derived here by requiring the energy released to be less than the measured heat flow at the surface of the Earth. Similar arguments are used to derive a bound on the flux of monopoles at Jupiter moving more slowly than 10−3c (1016 GeV m−1), FJ10−18 cm−2 sr−1 s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dimopoulos, S., Glashow, Purcell, E. M. & Wilczek, F. Nature 298, 824 (1982).

    Article  ADS  Google Scholar 

  2. Polyakov, A. M. Pis'ma Zh. Eksp. Teor. Fix. 20, 430 (1974); JETP Lett. 20, 194 (1974).

    Google Scholar 

  3. 't Hooft, G. Nucl. Phys. B79, 276 (1974); B105, 538 (1976).

    Article  ADS  Google Scholar 

  4. Wilczek, F. Phys. Rev. Lett. 48, 1146 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Callan, C. G. Phys. Rev. D25, 2141 (1982); Phys. Rev. D26, 2058 (1983).

    ADS  CAS  Google Scholar 

  6. Rubakov, V. A. Pis' ma Zh. Eksp. Teor. Fiz. 33, 658 (1981); JETP Lett. 33, 644 (1981); Nucl. Phys. 203B, 311 (1982).

    CAS  Google Scholar 

  7. Parker, E. N. Astrophys. J. 160, 383 (1970).

    Article  ADS  Google Scholar 

  8. Lazarides, G., Shafi, Q. & Walsh, T. F. Phys. Lett. 100B, 21 (1981).

    Article  Google Scholar 

  9. Bludman, S. A. & Ruderman, M. A. Phys. Rev. Lett. 36, 840 (1976).

    Article  ADS  Google Scholar 

  10. Turner, M. S., Parker, E. N. & Bogdan, T. J. Phys. Rev. D26, 1296 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Rephaeli, Y. & Turner, M. S. Phys. Lett. 121B, 115 (1983).

    Article  Google Scholar 

  12. Cabrera, B. Phys. Rev. Lett. 48, 1378 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Racine, WI. Monopole Meet. (1982).

  14. Dimopoulos, S., Preskill, J. & Wilczek, F. Phys. Lett. 119B, 320 (1982).

    Article  Google Scholar 

  15. Kolb, E. W., Colgate, S. A. & Harvey, J. A. Phys. Rev. Lett. 49, 1373 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Bais, F. A., Ellis, J., Nanopoulos, D. V. & Olive, K. A. CERN Preprint TH 3383 (1982).

  17. Freese, K. & Turner, M. S. Phys. Lett. B (in the press).

  18. Ahlen, S. & Kinoshita, K., Phys. Rev. D26, 2347 (1982); Martim'yanov, V.P. & Khakimov, S. Kh. JETP 35, 20 (1972).

    CAS  Google Scholar 

  19. Drell, S., Kroll, N., Mueller, M., Parke, S. & Ruderman, M. Phys. Rev. Lett. 50, 644 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Allen, C. W. Astrophysical Quantities 3rd edn (Athlone, London, 1976).

    Google Scholar 

  21. Carrigan, R. A. Jr Nature 288, 348 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, M. Monopole heat. Nature 302, 804–806 (1983). https://doi.org/10.1038/302804a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302804a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing