Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes

Abstract

The toxic action of yeast killer proteins seems to involve selective functional damage to the plasma membrane of the sensitive cell. Physiological effects include leakage of K+ (refs 1, 2), inhibition of active transport of amino acids1,3 and acidification of the cell interior1,4. These effects are strikingly similar to the effects of certain bacterial colicins which have been demonstrated previously to form channels in membranes5. Proposed mechanisms of action have usually postulated a limited permeability change induced by the toxin in the plasma membrane1–4,6,7. We report here that a killer toxin from the yeast Pichia kluyveri forms ion-permeable channels in phospholipid bilayer membranes, and we propose that the in vitro electrophysiological properties of these channels account for the morbid effects observed in intoxicated cells. A preliminary account of this work has appeared elsewhere8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Middelbeek, E. J., Stumm, C. & Vogels, G. D. Antonie van Leeuwenhoek 46, 205–220 (1980).

    Article  CAS  Google Scholar 

  2. Bussey, H. & Skipper, N. J. Bact. 124, 476–483 (1975).

    CAS  PubMed  Google Scholar 

  3. De la Pena, P., Barros, F., Gascon, S., Ramos, S. & Lazo, P. S. Biochem. biophys. Res. Commun. 96, 544–550 (1980).

    Article  CAS  Google Scholar 

  4. De la Pena, P., Barros, F., Gascon, S., Lazo, P. S. & Ramos, S. J. biol. Chem. 256, 10420–10425 (1981).

    CAS  PubMed  Google Scholar 

  5. Schein, S. J., Kagan, B. L. & Finkelstein, A. Nature 276, 159–163 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Bussey, H. J. gen. Microbiol. 82, 171–179 (1974).

    Article  Google Scholar 

  7. Kotani, H., Shinmyo, A. & Enatsu, T. J. Bact. 129, 640–650 (1977).

    CAS  PubMed  Google Scholar 

  8. Kagan, B. L. & Finkelstein, A. Biophys. J. 37, 208a (1982).

  9. Bussey, H. Adv. microb. Physiol. 22, 93–122 (1981).

    Article  CAS  Google Scholar 

  10. Wickner, R. B. Plasmid 2, 303–322 (1979).

    Article  CAS  Google Scholar 

  11. Middelbeek, E. J., Crutzen, A. Q. H. & Vogels, G. D. Antimicrob. Ag. Chemother. 18, 519–524 (1980).

    Article  CAS  Google Scholar 

  12. Schindler, H. & Rosenbusch, J. P. Proc. natn. Acad. Sci. U.S.A 75, 3751–3755 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Ehrenstein, G., Lecar, H. & Nossel, R. J. gen. Physiol. 55, 119–133 (1970).

    Article  CAS  Google Scholar 

  14. Schein, S. J., Colombini, M. & Finkelstein, A. J. Membrane Biol. 30, 99–120 (1976).

    Article  CAS  Google Scholar 

  15. Hille, B. in Handbk of Physiology Vol 1, Pt 1 (eds. Brookhart, J. M. & Mountcastle, V. B.) 99–136 (1977).

    Google Scholar 

  16. Middlebeek, E. J., Hermans, J. M. H. & Stumm, C. Antonie van Leeuwenhoek 45, 437–450 (1979).

    Article  Google Scholar 

  17. Skipper, N. & Bussey, H. J. Bact. 129, 668–677 (1977).

    CAS  PubMed  Google Scholar 

  18. Slayman, C. L. J. gen. Physiol. 49, 93–116 (1965).

    Article  CAS  Google Scholar 

  19. Sanders, D. & Slayman, C. L. J. gen. Physiol. 80 (in the press).

  20. Sanders, D., Hanse, U-P., & Slayman, C. L. Proc. natn. Acad. Sci. U.S.A. 78, 5903–5907 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Seaston, A., Carr, G. & Eddy, A. A. Biochem. J. 154, 669–676 (1976).

    Article  CAS  Google Scholar 

  22. Kopecky, A. L., Copeland, C. P. & Lusk, J. E. Proc. natn. Acad. Sci. U.S.A. 72, 4631–4634 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Konisky, J. in The Bacteria Vol. 6 (eds. Ornston, L. N. & Sokatch, J. R.) 71–136 (Academic, London, 1978).

    Google Scholar 

  24. Jakes, K. S. & Model, P. J. Bact. 138, 770–778 (1979).

    CAS  PubMed  Google Scholar 

  25. Kagan, B. L. thesis, Yeshiva Univ., New York (1982).

  26. Wendt, L. J. Bact. 104, 1236–1241 (1970).

    CAS  PubMed  Google Scholar 

  27. Kagawa, Y. & Racker, E. J. Biol. Chem. 246, 5477–5487 (1971).

    CAS  Google Scholar 

  28. Montal, M. Meth. Enzym. 32 b, 545–554 (1974).

    Article  CAS  Google Scholar 

  29. Hladky, S. & Haydon, D. A. Biochim. biophys. Acta 274, 294–312 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagan, B. Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes. Nature 302, 709–711 (1983). https://doi.org/10.1038/302709a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302709a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing