Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Facile transition of poly[d(TG)·d(CA)] into a left-handed helix in physiological conditions

Abstract

The DNA polymer d(GC)n·d(GC)n can undergo a transition from the usual right-handed 10.4 base pairs (bp) per turn B form to a novel left-handed 12 bp per turn Z form in response to altered environmental conditions1–4. Several other alternating purine-pyrimidine DNA polymers with modified bases have been shown to undergo transitions from B to Z conformations, with varying degrees of difficulty5–9. We report here that the unmodified DNA polymer d(TG)n·d(CA)n readily undergoes a transition to a Z conformation when subjected to unwinding torsional stress in ionic conditions that are close to physiological. By using a two-dimensional gel electrophoresis system, we have determined both the critical free energy of supercoiling that is required to initiate the transition and the free energy of super-coiling that is required to maintain this polymer in the Z form.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pohl, F. M. & Jovin, T. M. J. molec. Biol. 57, 375–396 (1972).

    Article  Google Scholar 

  2. Arnott, S., Chandresekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. Nature 283, 743–745 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Wang, A. H. J. et al. Nature 282, 680–686 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Behe, M. & Felsenseld, G. Proc. natn. Acad. Sci. U.S.A. 78, 1619–1623 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Mitsui, Y. et al. Nature 228, 1166–1169 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Saenger, W., Londmann, H. & Lazius, A. G. Jerusalem Symp. quant. Chem. Biochem. 5, 457–467 (1973).

    CAS  Google Scholar 

  7. Santella, R. M., Grunberger, D., Weinstein, I. B. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 78, 1451–1455 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Nordheim, A. et al. Nature 294, 417–422 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Wells, R. D. et al. J. biol. Chem. 257, 10166–10171 (1982).

    CAS  PubMed  Google Scholar 

  10. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 556–564 (1977).

    Article  ADS  Google Scholar 

  11. Pulleyblank, D. E. FEBS Lett. 139, 276–278 (1982).

    Article  CAS  Google Scholar 

  12. Ellison, M. J. & Pulleyblank, D. E. Can. J. Biochem. 60, 651–658 (1982).

    Article  CAS  Google Scholar 

  13. Shure, M., Pulleyblank, D. E. & Vinograd, J. Nucleic Acids Res. 4, 1183–1205 (1977).

    Article  CAS  Google Scholar 

  14. Hearst, J. & Stockmayer, W. H. J. chem. Phys. 37, 1425–1433 (1962).

    Article  ADS  CAS  Google Scholar 

  15. Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 76, 200–203 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Pulleyblank, D. E., Shure, M., Tang, D., Vinograd, J. & Vinograd, H-P. Proc. natn. Acad. Sci. U.S.A. 72, 4280–4284 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Depew, R. E. & Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 72, 4275–4279 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Nordheim, A. et al. Cell 31, 309–318 (1982).

    Article  CAS  Google Scholar 

  19. Campbell, A. M. Biochem. J. 155, 101–105 (1976).

    Article  CAS  Google Scholar 

  20. Peck, L. J., Nordheim, A., Rich, A. & Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 79, 4560–4564 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Singleton, C. K., Klysik, J., Stirdivant, S. M. & Wells, R. D. Nature 299, 312–316 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Klysik, J., Stirdivant, S. M., Larson, J. E., Hart, P. A. & Wells, R. D. Nature 290, 672–676 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Bauer, W. R. A. Rev. Biophys. Bioengng 7, 287–313 (1978).

    Article  CAS  Google Scholar 

  24. Nishioka, Y. & Leder, P. J. biol. Chem. 255, 3691–3694 (1980).

    CAS  Google Scholar 

  25. Nishioka, Y. & Leder, P. Cell 18, 875–882 (1979).

    Article  CAS  Google Scholar 

  26. Stuart, K., Davis, M., Sinn, E., Patten, P. & Hood, L. Cell 27, 573–581 (1981).

    Article  Google Scholar 

  27. Hamada, H., Petrino, M. G. & Kakunaga, T. Proc. natn. Acad. Sci. U.S.A. 79, 5901–5905 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haniford, D., Pulleyblank, D. Facile transition of poly[d(TG)·d(CA)] into a left-handed helix in physiological conditions. Nature 302, 632–634 (1983). https://doi.org/10.1038/302632a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302632a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing