Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Runaway instability in accretion disks orbiting black holes

Abstract

The runaway instability (very fast, ‘catastrophic’, mass exchange) operates in close binaries when the more massive star overflows its Roche lobe1,2. The Roche lobe radius shrinks due to the mass exchange more rapidly than the radius of the star. The star keeps overflowing its Roche lobe and continuously loses mass. It has been found3 that a critical equipotential surface similar to the Roche lobe also exists in the black hole accretion disk system. The existence of this lobe is not connected with the gravity of the disk but is due to general relativistic effects in the gravitational field of the black hole alone. We argue here that all the accretion disks which overflow their Roche lobes and have their masses greater than a few per cent of the mass of the central hole are unstable with respect to runaway instability. This may be very important for quasars and other active galactic nuclei.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morton, D. C. Astrophys. J. 132, 146 (1960).

    Article  ADS  Google Scholar 

  2. Smak, J. Acta astr. 12, 28 (1962).

    ADS  Google Scholar 

  3. Abramowicz, M., Jaroszyński, M. & Sikora, M. Astr. Astrophys. 63, 221 (1978).

    ADS  Google Scholar 

  4. Paczyński, B. & Wiita, P. J. Astr. Astrophys. 88, 23 (1982).

    ADS  Google Scholar 

  5. Paczyński, B. Acta astr. 30, 347 1980

    ADS  Google Scholar 

  6. Paczyński, B., Bisnovatyi-Kogan Acta astr. 31, 283 (1981).

    ADS  Google Scholar 

  7. Muchotrzeb, B. & Paczyński, B. Acta astr. 32, 1 (1982)

    ADS  Google Scholar 

  8. Abramowicz, M. A. & Zurek, W. H. Astrophys. J. 246, 314 (1982).

    Article  ADS  Google Scholar 

  9. Abramowicz, M., Henderson, P. F. & Ghosh, P. Mon. Not. R. astr. Soc. (in the press).

  10. Ostirker, J. P. Astrophys. J. 140, 1067 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  11. Rees, M. J., Begelman, M. C., Blandford, R. D. & Phinney, E. S. Nature 295, 17 (1982).

    Article  CAS  ADS  Google Scholar 

  12. Will, G. M. Astrophys. J. 191, 521 (1974).

    Article  ADS  Google Scholar 

  13. Will, C. M. Astrophys. J. 196, 41 (1975).

    Article  ADS  Google Scholar 

  14. Bailey, M. E. Mon. Not. R. astr. Soc. 200, 247 (1982).

    Article  CAS  ADS  Google Scholar 

  15. Abramowicz, M., Calvani, M. & Nobili, L. Astrophys. J. 242, 772 (1980).

    Article  ADS  Google Scholar 

  16. Wiita, P. J. Astrophys. J. 256, 666 (1982).

    Article  ADS  Google Scholar 

  17. Paczyński, B. Acta astr. 28, 91 (1978).

    ADS  Google Scholar 

  18. Sander, R. H. Nature 294, 427 (1981).

    Article  ADS  Google Scholar 

  19. Katz, J. I. & Piran, T. Astrophys. Lett. 23, 11 (1982).

    ADS  Google Scholar 

  20. Calvani, M. & Nobili, L. Astrophys. Space Sci. 79, 387 (1981)

    ADS  Google Scholar 

  21. Abramowicz, M. Nature 294, 235 (1981).

    Article  ADS  Google Scholar 

  22. Jaroszyński, M., Abramowicz, M. A. & Paczyński, B. Acta astr. 30, 1 (1980).

    ADS  Google Scholar 

  23. Pringle, J. E. A. Rev. Astr. Astrophys. 19, 137 (1981).

    Article  ADS  Google Scholar 

  24. Paczyński, B. Astr. Gesell. Mitt. 57, 27 (1982)

    ADS  Google Scholar 

  25. Wiita, P. J. Comments Astrophys. 9, 251 (1982).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramowicz, M., Calvani, M. & Nobili, L. Runaway instability in accretion disks orbiting black holes. Nature 302, 597–599 (1983). https://doi.org/10.1038/302597a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302597a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing