Review Article | Published:

Biological applications of picosecond spectroscopy

Naturevolume 302pages481487 (1983) | Download Citation

Subjects

Abstract

Technological advances in picosecond spectroscopy have permitted the mechanisms of various chemical, physical and biological processes to be elucidated and understood to a greater degree than ever before. By means of picosecond emission, absorption and Raman spectroscopy, one can probe and measure directly the transient intermediates and kinetics of primary events in complex biological processes. A description of two current types of laser systems—solid-state and synchronously pumped dye lasers—and their application to determining the primary events in the biological processes of dissociation of oxy- and carboxymyoglobin, excited-state relaxation of porphyrins and visual transduction, illustrate the power of picosecond spectroscopy.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Rentzepis, P. M. Science 202, 174–182 (1978).

  2. 2

    Reynolds, A. H. & Rentzepis, P. M. Adv. bot. Res. 8, 1–23 (1980).

  3. 3

    Ippen, E. P. & Shank, C. V. in Ultrashort Light Pulses (ed. Shapiro, S. L.) (Springer, Heidelberg, 1977).

  4. 4

    Shapiro, S. L., Cavanaugh, R. R. & Stephenson, J. C. Opt. Lett. 6, 470–474 (1981).

  5. 5

    Eastwood, D. & Gouterman, M. J. molec. Spectrosc. 30, 437–458 (1969).

  6. 6

    Tsvirko, M. P., Stelmakh, G. F., Pyatosin, V. E., Solovyov, K. N. & Kachura, T. F. Chem. Phys. Lett. 73, 80–83 (1980).

  7. 7

    Magde, D., Windsor, M. W., Holten, D. & Gouterman, M. Chem. Phys. Lett. 29, 182–187 (1974).

  8. 8

    Gouterman, M., Mathies, R. A., Smith, B. E. & Caughey, W. S. J. chem. Phys. 52, 3795–3802 (1979).

  9. 9

    Smith, B. E. & Gouterman, M. Chem. Phys. Lett. 2, 517–519 (1968).

  10. 10

    Becker, R. S. & Kasha, M. J. Am. chem. Soc. 77, 3669–3770 (1955).

  11. 11

    Treibs, A., Ann. N.Y. Acad. Sci. 206, 97–115 (1973).

  12. 12

    Gouterman, M., Ann. N.Y. Acad. Sci. 206, 70–83 (1973).

  13. 13

    Ake, R. L. & Gouterman, M. Theor. chim. Acta. 15, 20–42 (1969).

  14. 14

    Gouterman, M., Schwarz, F. P., Smith, P. D. & Dolphin, D. J. chem. Phys. 59, 676–690 (1973).

  15. 15

    Corwin, A. H., Chivvis, A. B., Poor, R. W., Whitten, D. G. & Baker, E. W. J. Am. chem. Soc. 90, 6577–6583 (1968).

  16. 16

    Kobayashi, T., Huppert, D., Straub, K. D. & Rentzepis, P. M. J. chem. Phys. 70, 1720–1726 (1979).

  17. 17

    Kobayashi, T., Straub, K. D. & Rentzepis, P. M. Photochem. Photobiol. 29, 925–931 (1979).

  18. 18

    Straub, K. D., Huppert, D. & Rentzepis, P. M. J. Photochem. 17, 128–129 (1981).

  19. 19

    Bergkamp, M. A., Dalton, J. & Netzel, T.L. J. Am. chem. Soc. 104, 253–259 (1982).

  20. 20

    Ake, R. L. & Gouterman, M. Theor. chim. Acta 17, 408–416 (1970).

  21. 21

    Adamczyk, A. & Wilkinson, F. JCS Faraday II 68, 2031–2041 (1972).

  22. 22

    Reynolds, A. H., Milton, S. V., Straub, K. D. & Rentzepis, P. M. Biophys. J. (Submitted).

  23. 23

    Antonini, E. & Brunori, M. Front. Biol. 21, 1–445 (1971).

  24. 24

    Noe, L. J., Eisert, W. G. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 75, 573–577 (1978).

  25. 25

    Reynolds, A. H., Rand, S. D. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 78, 2292–2296 (1981).

  26. 26

    Huppert, D., Straub, K. D. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 74, 4139–4143 (1977).

  27. 27

    Bücher, T. & Kaspers, J. Biochim. biophys. Acta 1, 21–34 (1947).

  28. 28

    Gibson, Q. H. & Ainsworth, S. Nature 180, 1416–1417 (1957).

  29. 29

    Ottolenghi, M. Adv. Photochem. 12, 97–200 (1980).

  30. 30

    Yoshizawa, T. & Kito, Y. Nature 182, 1604–1605 (1958).

  31. 31

    Grellman, K. H., Livingston, R. & Pratt, D. Nature 193, 1258–1260 (1962).

  32. 32

    Yoshizawa, T. & Wald, G. Nature 197, 1279–1286 (1963).

  33. 33

    Busch, G. E., Applebury, M. L., Lamola, A. A. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 69, 2802–2806 (1972).

  34. 34

    Peters, K., Applebury, M. L. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 74, 3119–3123 (1977).

  35. 35

    Wald, G. Nature 219, 800–807 (1968).

  36. 36

    Rosenfeld, T., Honig, B., Ottolenghi, M., Hurley, J. & Ebrey, T. G. Pure appl. Chem. 49, 341–351 (1977).

  37. 37

    Warshel, A. Nature 260, 679–683 (1976).

  38. 38

    Mathies, R., Oseroff, A. R. & Stryer, L. Proc. natn. Acad. Sci. U.S.A. 73, 1–5 (1976).

  39. 39

    Green, B. H., Monger, T. G., Alfano, R. R., Aton, B. & Callender, R. H. Nature 269, 179–180 (1977).

  40. 40

    Monger, T. G., Alfano, R. R. & Callender, R. H. Biophys. J. 27, 105–115 (1979).

  41. 41

    Birge, R. R. & Hubbard, L. M. J. Am. chem. Soc. 102, 2195–2205 (1980).

  42. 42

    Spalink, J. D., Reynolds, A. H., Rentzepis, P. M., Applebury, M. L. & Sperling, W. Proc. natn. Acad. Sci. U.S.A. (in the press).

  43. 43

    Braiman, M. & Mathies, R. Proc. natn. Acad. U.S.A. 79, 403–407 (1982).

  44. 44

    Rothschild, K. J. & Marrero, H. Proc. natn. Acad. Sci. U.S.A. 79, 4045–4049 (1982).

  45. 45

    Favrot, J., Leclerq, J. M., Roberge, R., Sandorfy, C. & Vocelle, D. Chem. Phys. Lett. 53, 433–438 (1978).

  46. 46

    Favrot, J., Sandorfy, C. & Vocelle, D. Photochem. Photobiol. 28, 271–272 (1978).

  47. 47

    Rentzepis, P. M. Chem. Phys. Lett. 2, 117–120 (1968).

Download references

Author information

Affiliations

  1. Bell Laboratories, Murray Hill, New Jersey, 07974, USA

    • E. F. Hilinski
    •  & P. M. Rentzepis

Authors

  1. Search for E. F. Hilinski in:

  2. Search for P. M. Rentzepis in:

About this article

Publication history

Issue Date

DOI

https://doi.org/10.1038/302481a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.