Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sulphur isotope abundances in Aphebian clastic rocks: implications for the coeval atmosphere

Abstract

The evolution of the atmosphere has been of interest to many scientists because it relates to the history of the ocean, the sedimentary cycle, the geochemical cycle of volatile elements, and the development of life. It also has a key role in the genesis of iron formations and gold and uranium deposits. Although it is generally accepted that the primitive atmosphere was reducing, a debatable aspect is when and how the oxygen content increased. A rise of atmospheric oxygen pressure about 2,000 Myr BP is suggested by the appearance of redbeds and the banded iron formations1,2. On the other hand, high atmospheric oxygen in very early Precambrian time, as a result of photodissociation of water, has been proposed3. This is supported by occurrences in Precambrian rocks of sulphates4,5, volatile elements6, detrital minerals5,7 and palaeosols8, which are similar to those found in younger rocks. Because the change of sulphur valency is often accompanied by isotopic fractionation, sulphur isotope abundances in minerals have been used to infer the environment at the time of their formation. It occurred to us that additional sulphur isotope analyses of pyrite from continental sedimentary rocks might provide evidence relative to the question of oxygen development in the atmosphere. Accordingly, a major study of sulphur isotope abundances in pyrite from fluviatile sedimentary rocks in the Elliot Lake area- Canada, and for comparison, data from occurrences in Northwest Territories, Canada, Witwatersrand, South Africa, and Jacobina, Brazil, are now reported and implications respecting the coeval atmosphere discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cloud, P. E. Jr, Science 160, 729–735 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Garreis, R. M., Perry, E. A., Jr & McKenzie, F. T. Econ. Geol. 68, 1173–1179 (1973).

    Article  Google Scholar 

  3. Brinkman, R. T. J. geophys. Res. 74, 5355–5368 (1969).

    Article  ADS  Google Scholar 

  4. Vinogradov, V. I., Reimer, T. O., Leites, A. M. & Smelnov, S. B. Lithol. Pol. Isk. 4, 12–27 (1976).

    Google Scholar 

  5. Clemmey, H. & Badham, N. Geology 10, 141–146 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Dimroth, E. & Kimberley, M. M. Can. J. Earth Sci. 13, 1161–1185 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Simpson, P. R. & Bowles, J. F. W. Phil. Trans. R. Soc. A286, 527–548 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Gay, A. L. & Grandstaff, D. E. Precambr. Res. 12, 349–373 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Van Schmus, W. R. J. Geol. 73, 755–780 (1965).

    Article  ADS  CAS  Google Scholar 

  10. Fairbairn, H. W., Hurley, P. M., Card, K. D. & Knight, C. V. Can. J. Earth Sci. 6, 489–497 (1969).

    Article  ADS  CAS  Google Scholar 

  11. Roscoe, S. M. Geol. Ass. Can. Spec. Pap. 12–271, 31–47 (1973).

    Google Scholar 

  12. Roscoe, S. M. Geol. Surv. Can. Pap. 68–40 (1969).

  13. Theis, N. J. Bull. geol. Surv. Can. 304 (1979).

  14. Ramdohr, P. Geol. Soc. S. Afr. 71, 67–100 (1958).

    Google Scholar 

  15. Meddaugh, W. S. & Holland, H. D. Geol. Soc. Am. Abst. Prog. 13, 481 (1980); 14, 509 (1981).

    Google Scholar 

  16. Robinson, A. G. & Spooner, E. T. Nature 299, 622–624 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Halas, S. & Wotacewicz, W. P. Analyt. Chem. 63, 686–689 (1981).

    Article  Google Scholar 

  18. Robinson, B. W. & Kusakaba, M. Analyt. Chem. 47, 1179–1181 (1975).

    Article  CAS  Google Scholar 

  19. Kaplan, I. R., Emery, K. O. & Rittenberg, S. C. Geochim. cosmochim. Acta 27, 297–331 (1963).

    Article  ADS  CAS  Google Scholar 

  20. Schwarcz, H. P. & Burnie, S. W. Miner. Depos. 19, 264–277 (1973).

    ADS  Google Scholar 

  21. Chambers, L. A. Geochim. cosmochim. Acta 46, 721–728 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Jensen, L. Econ. Geol. 53, 598–616 (1958).

    Article  CAS  Google Scholar 

  23. Goldhaber, M. B., Reynolds, R. L. & Rye, R. O. Econ. Geol. 73, 1690–1705 (1978).

    Article  CAS  Google Scholar 

  24. Goodwin, A. M., Monster, J. & Thode, H. G. Econ. Geol. 71, 870–891 (1976).

    Article  CAS  Google Scholar 

  25. Thode, H. G. & Goodwin, A. M. Precambr. Res. (in the press).

  26. Rye, D. M. & Rye, R. O. Econ. Geol. 69, 293–317 (1974).

    Article  CAS  Google Scholar 

  27. Nesbitt, H. W. & Young, G. M. Nature 299, 715–717 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Kimberley, M. M. MAC Short Course in Uranium Deposits (ed. Kimberley, M. M.) 339–381 (Mineral Association of Canada, 1978).

    Google Scholar 

  29. Dimroth, E. Phil. Trans. R. Soc. A291, 277–287 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Robinson, A. G. & Spooner, E. T. Geol. Soc. Am. Abstr. Prog. 13, 539 (1981).

    Google Scholar 

  31. Thode, H. G., Dunford, H. B. & Shima, M. Econ. Geol. 57, 565–578 (1962).

    Article  CAS  Google Scholar 

  32. Hoefs, J., Nielsen, H. & Schidlowski, M. Econ. Geol. 63, 975–977 (1968).

    Article  CAS  Google Scholar 

  33. Chukhrov, F. V., Vinogradov, V. I. & Ermilova, L. P. Miner. Depos. 5, 209–222 (1970).

    Article  ADS  CAS  Google Scholar 

  34. Pretorius, D. A. Handbook of Strata-bound and Stratiform Ore Deposits Vol. 7 (ed. Wolf, K. H.) 29–87 (Elsevier, Amsterdam, 1976).

    Google Scholar 

  35. Smith, N. D. & Minter, W. E. L. Econ. Geol. 75, 1–14 (1980).

    Article  CAS  Google Scholar 

  36. Utter, T. Geol. Rdsch. 67, 774–805 (1978).

    Article  Google Scholar 

  37. Hallbauer, D. K., Jahns, H. M. & Beltmann, H. A. Geol. Rdsch. 66, 477–491 (1977).

    Article  Google Scholar 

  38. Hallbauer, D. K. Geol. Surv. Prof. Paper 1161 -M (1981).

  39. Young, G. M. Can. J. Earth Sci. 12, 1250–1254 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, K., Campbell, F. & Krouse, H. Sulphur isotope abundances in Aphebian clastic rocks: implications for the coeval atmosphere. Nature 302, 323–326 (1983). https://doi.org/10.1038/302323a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302323a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing