Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats

Abstract

The primary base of the food chain of the dense animal populations found clustered around deep-sea hydrothermal vents1,2 appears to be chemoautotrophic bacteria, whose energy source is geothermally reduced hydrogen sulphide emitted from the vents3,4. Recently, a symbiotic association has been postulated5 between chemoautotrophic sulphur-oxidizing bacteria and the vent tubeworm, Riftia pachyptila Jones (phylum Pogonophora) on the basis of histological5 and enzymatic6 evidence. Hydrothermal vents thus appear to be a spectacular example of the role of reduced inorganic elements in animal nutrition. Marine muds and salt marsh sediments also produce a continuous supply of reduced sulphur compounds7,8, so the possibility arises that they support similar symbiotic associations5,9. I now present microscopic, enzymatic, and physiological evidence for the occurrence of intracellular sulphur-oxidizing chemoautotrophic bacteria in a bivalve, Solemya velum Say (phylum Mollusca), found in reducing muds of eelgrass beds. Bacterial symbionts were also observed in other animals from a variety of sulphide-rich habitats. It thus seems that symbiotic relationships with bacteria are widespread among sulphide-habitat marine invertebrates, and may have a significant role in their nutrition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Corliss, J. B. et al. Science 203, 1073–1083 (1979).

    Article  ADS  CAS  Google Scholar 

  2. RISE Project Group Science 207, 1421–1432 (1980).

  3. Jannasch, H. W. & Wirsen, C. O. Bioscience 29, 592–598 (1979).

    Article  CAS  Google Scholar 

  4. Ruby, E. G., Wirsen, C. O. & Jannasch, H. W. Appl. envir. Microbiol. 42, 317–324 (1981).

    CAS  Google Scholar 

  5. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Science 213, 340–342 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Felbeck, H. Science 213, 336–338 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Jorgensen, B. B. Nature 296, 643–645 (1982).

    Article  ADS  Google Scholar 

  8. Howarth, R. W. & Teal, J. M. Limnol. Oceanogr. 24, 999–1013 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Cavanaugh, C. M. Biol. Bull. mar. biol. lab., Woods Hole 159, 457 (1980).

    Google Scholar 

  10. Stanley, S. M. Geol. Soc. Am. Mem. 125, 119–121, 132–133 (1970).

    Google Scholar 

  11. Blackwell, J. F., Gainey, L. F. Jr & Greenberg, M. J. Biol. Bull. mar. biol. lab., Woods Hole 152, 1–11 (1977).

    Article  Google Scholar 

  12. McFadden, B. A. Bact. Rev. 37, 289–319 (1973).

    CAS  PubMed  Google Scholar 

  13. Hobbie, J. E., Daley, R. J. & Jasper, S. Appl. envir. Microbiol. 33, 1225–1228 (1977).

    CAS  Google Scholar 

  14. Watson, S. W., Novitsky, T. J., Quinby, H. L. & Valois, F. W. Appl. Microbiol. 33, 940–946 (1977).

    CAS  Google Scholar 

  15. Sprent, J. I. in The Biology of Nitrogen-Fixing Organisms (European Plant Biology Series) 13–26 (McGraw-Hill, New York, 1979).

    Google Scholar 

  16. Bailey, J. E. & Ollis, D. F. in Biochemical Engineering Fundamentals, 70 (McGraw-Hill, New York, 1977).

    Google Scholar 

  17. Beudeker, R. F., Cannon, G. C., Kuenen, J. G. & Shively, J. M. Archs Mikrobiol. 124, 185–189 (1977).

    Google Scholar 

  18. Felbeck, H., Childress, J. J. & Somero, G. N. Nature 293, 291–293 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Southward, A. J. et al. Nature 293, 616–620 (1981).

    Article  ADS  Google Scholar 

  20. Giere, O., Liebezeit, G. & Dawson, R. Mar. Ecol. Prog. Ser. 8, 291–299 (1982).

    Article  ADS  Google Scholar 

  21. Jones, M. L. Science 213, 333–336 (1979).

    Article  ADS  Google Scholar 

  22. Reid, R. G. B. & Bernard, F. R. Science 208, 609–610 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Boss, K. J. & Turner, R. D. Malacologia 20, 161–194 (1980).

    Google Scholar 

  24. Allen, J. A. Phil. Trans. R. Sci. B241, 421–484 (1958).

    Article  Google Scholar 

  25. Howarth, R. W., Giblin, A., Gale, J., Peterson, B. J. & Luther, G. W. III, in Environmental Biogeochemistry (ed. Hallberg, R. O.) (Ecological Bulletin, Stockholm, in the press).

  26. Waterbury, J. B. & Stanier, R. Y. Microbiol. Rev. 42, 2–44 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Land, J. & Norrevang, A. Biol. Skr. 21, 1–102 (1977).

    Google Scholar 

  28. Lonsdale, P. Nature 281, 531–534 (1979).

    Article  ADS  Google Scholar 

  29. Emery, K. O. & Hulsemann, J. Deep-Sea Res. 8, 165–180 (1962).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavanaugh, C. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302, 58–61 (1983). https://doi.org/10.1038/302058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing