Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental realization of a quantum algorithm

Abstract

Quantum computers1,2,3,4,5 can in principle exploit quantum-mechanical effects to perform computations (such as factoring large numbers or searching an unsorted database) more rapidly than classical computers1,2,6,7,8. But noise, loss of coherence, and manufacturing problems make constructing large-scale quantum computers difficult9,10,11,12,13. Although ion traps and optical cavities offer promising experimental approaches14,15, no quantum algorithm has yet been implemented with these systems. Here we report the experimental realization of a quantum algorithm using a bulk nuclear magnetic resonance technique16,17,18, in which the nuclear spins act as ‘quantum bits’19. The nuclear spins are particularly suited to this role because of their natural isolation from the environment. Our simple quantum computer solves a purely mathematical problem in fewer steps than is possible classically, requiring fewer ‘function calls’ than a classical computer to determine the global properties of an unknown function.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Quantum circuit for performing the D-J algorithm.
Figure 2: Proton spectrum after completion of theD-J algorithm and a single read-out pulse XA,with an effectively pure.
Figure 3: Experimentally measured and theoretically expected deviation density matrices after completion of the D-J algorithm.

References

  1. Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  2. Shor, P. Algorithms for quantum computation: discrete logarithms and factoring. Proc. 35th Annu. Symp. on Found. of Computer Science 124–134 (IEEE Comp. Soc. Press, Los Alomitos, CA, 1994).

  3. Divincenzo, D. P. Quantum computation. Science 270, 255–261 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Lloyd, S. Quantum-mechanical computers. Sci. Am. 273, 44–50 (1995).

    Article  Google Scholar 

  5. Ekert, A. & Jozsa, R. Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  7. Simon, D. On the power of quantum computation. Proc. 35th Annu. Symp. on Found. of Computer Science 116–124 (IEEE Comp. Soc. Press, Los Alamitos, CA, 1994).

  8. Grover, L. K. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4012 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Unruh, W. G. Maintaining coherence in quantum computers. Phys. Rev. A 51, 2, 992–997 (1995).

    Article  Google Scholar 

  10. Chuang, I. L., Laflamme, R., Shor, P. & Zurek, W. H. Quantum computers, factoring, and decoherence. Science 270, 1633–1635 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Landauer, R. Dissipation and noise immunity in computation and communication. Nature 335, 779–784 (1988).

    Article  ADS  Google Scholar 

  12. Landauer, R. Is quantum mechanics useful? Phil. Trans. R. Soc. Lond. A 335, 367–376 (1995).

    ADS  MathSciNet  Google Scholar 

  13. Palma, G. M., Suominen, K.-A. & Ekert, A. K. Quantum computers and dissipation. Proc. R. Soc. Lond A 452, 567–584 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  14. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Gershenfeld, N. & Chuang, I. L. Bulk spin-resonance quantum computation. Science 275, 350–356 (1997).

    Article  MathSciNet  CAS  Google Scholar 

  17. Cory, D. G., Price, M. D., Fahmy, A. F. & Havel, T. F. Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. Physica D(in the press; LANL E-print quant-ph/9709001.gov, 1997).

  18. Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR spectroscopy. Proc. Natl Acad. Sci. USA 94, 1634–1639 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Lloyd, S. Apotentially realizable quantum computer. Science 261, 1569–1571 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Cleve, R., Ekert, A., Macchiavello, C. & Mosca, M. Proc. R. Soc. Lond. A 454, 339–354 (1998). LANL E-prin quant-ph/9708016.

    Google Scholar 

  21. Slichter, C. P. Principles of Magnetic Resonance (Springer, Berlin, 1990).

    Book  Google Scholar 

  22. Knill, E., Chuang, I. L. & Laflamme, R. Effective pure states for bulk quantum computation. Phys. Rev. A 57(5), May ((1998).

  23. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ. Press, Oxford, 1994).

    Google Scholar 

  24. Chuang, I. L., Gershenfeld, N., Kubinec, M. G. & Leung, D. W. Bulk quantum computation with nuclear magnetic resonance: Theory and experiment. Proc. R. Soc. Lond. A 454, 447–467 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Warren, W. S. The usefulness of NMR quantum computing. Science 277, 1688–1690 (1997).

    Article  CAS  Google Scholar 

  26. Jones, T. F. & Mosca, M. Implementation of a quantum algorithm to solve deutsch's problem on a nuclear magnetic resonance quantum computer. J. Chem. Phys.(in the press; LANL E-print quant-ph/9801027).

Download references

Acknowledgements

We thank A. Pines and M. Kubinec for discussion. This work was supported by DARPA under the NMRQC and QUIC initiatives. L.V. gratefully acknowledges a Francqui Fellowship of the Belgian American Educational Foundation and a Yansouni Family Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac L. Chuang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chuang, I., Vandersypen, L., Zhou, X. et al. Experimental realization of a quantum algorithm. Nature 393, 143–146 (1998). https://doi.org/10.1038/30181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30181

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing