Abstract
Previously, Guillemin and Rosenberg1 and Saffran and Schally2 demonstrated the presence of hypothalamic factors that stimulated the secretion of adrenocorticotropic hormone (ACTH) by the pituitary gland. Recently, Vale et al.3,4 have isolated and sequenced an ovine hypothalamic peptide of 41 amino acids, which is believed to represent the major physiological corticotropin-releasing factor (CRF) (reviewed in refs 5, 6). Available data suggest that hypothalamic CRF enhances both the synthesis and secretion of ACTH and related peptides such as β-endorphin and β-lipotropin (β-LPH) (reviewed in ref. 6), which are all derived from the common precursor, termed ACTH–β-LPH precursor or preproopiomelanocortin (reviewed in ref. 7). Because CRF mediates the neural control of the pituitary–adrenocortical system, the characterization of its biosynthetic precursor and the gene encoding it is essential for understanding the molecular mechanism underlying the endocrine response to stress. We have now cloned DNA sequences complementary to the ovine hypothalamic mRNA encoding the CRF precursor (referred to hereafter as prepro-CRF). The nucleotide sequence of the cloned cDNA, reported here, has revealed the primary structure of prepro-CRF. The carboxyl end represents the CRF sequence preceded by the tetrapeptide, Arg-Lys-Arg-Arg, and followed by the dipeptide, Gly-Lys. Comparison of the amino acid sequence of prepro-CRF with those of the ACTH–β-LPH precursor and the arginine vasopressin–neurophysin II precursor8 suggests that these precursor proteins may be evolutionarily related.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Guillemin, R. & Rosenberg, B. Endocrinology 57, 599–607 (1955).
Saffran, M. & Schally, A. V. Can. J. Biochem. Physiol. 33, 408–415 (1955).
Vale, W., Spiess, J., Rivier, C. & Rivier, J. Science 213, 1394–1397 (1981).
Spiess, J., Rivier, J., Rivier, C. & Vale, W. Proc. natn. Acad. Sci. U.S.A. 78, 6517–6521 (1981).
Fink, G. Nature 294, 511–512 (1981).
Yasuda, N., Greer, M. A. & Aizawa, T. Endocr. Rev. 3, 123–140 (1982).
Numa, S. & Nakanishi, S. Trends biochem. Sci. 6, 274–277 (1981).
Land, H., Schütz, G., Schmale, H. & Richter, D. Nature 295, 299–303 (1982).
Okayama, H. & Berg, P. Molec. cell. Biol. 2, 161–170 (1982).
Hirose, T., Crea, R. & Itakura, K. Tetrahedron Lett. 28, 2449–2452 (1978).
Ito, H., Ike, Y., Ikuta, S. & Itakura, K. Nucleic Acids Res. 10, 1755–1769 (1982).
Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).
Steiner, D. F., Quinn, P. S., Chan, S. J., Marsh, J. & Tager, H. S. Ann. N. Y. Acad. Sci. 343, 1–16 (1980).
Suchanek, G. & Kreil, G. Proc. natn. Acad. Sci. U.S.A. 74, 975–978 (1977).
Nakanishi, S. et al. Nature 278, 423–427 (1979).
Shibasaki, T., Ling, N. & Guillemin, R. Biochem. biophys. Res. Commun. 96, 1393–1399 (1980).
Seidah, N. G., Rochemont, J., Hamelin, J., Benjannet, S. & Chrétien, M. Biochem. biophys. Res. Commun. 102, 710–716 (1981).
Amara, S. G., David, D. N., Rosenfeld, M. G., Roos, B. A. & Evans, R. M. Proc. natn. Acad. Sci. U.S.A. 77, 4444–4448 (1980).
Yoo, O. J., Powell, C. T. & Agarwal, K. L. Proc. natn. Acad. Sci. U.S.A. 79, 1049–1053 (1982).
Bradbury, A. F., Finnie, M. D. A. & Smyth, D. G. Nature 298, 686–688 (1982).
Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 852–862 (1975).
Maniatis, T., Kee, S. G., Efstratiadis, A. & Kafatos, F. C. Cell 8, 163–182 (1976).
Efstratiadis, A., Kafatos, F. C. & Maniatis, T. Cell 10, 571–585 (1977).
Browne, J. K. et al. Science 195, 389–391 (1977).
Grantham, R., Gautier, C., Gouy, M., Mercier, R. & Pavé, A. Nucleic Acids Res. 8, r49–r62 (1980).
Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).
Setzer, D. R., McGrogan, M., Nunberg, J. H., & Schimke, R. T. Cell 22, 361–370 (1980).
Tosi, M., Young, R. A., Hagenbüchle, O. & Schibler, U. Nucleic Acids Res. 9, 2313–2323 (1981).
Alwine, J. C., Kemp, D. J. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).
Beckmann, S. L., Chikaraishi, D. M., Deeb, S. S. & Sueoka, N. Biochemistry 20, 2684–2692 (1981).
Kaplan, B. B., Schachter, B. S., Osterburg, H. H., de Vellis, J. S. & Finch, C. E. Biochemistry 17, 5516–5524 (1978).
Bugnon, C., Fellmann, D., Gouget, A. & Cardot, J. Nature 298, 159–161 (1982).
Gillies, G. E., Linton, E. A. & Lowry, P. J. Nature 299, 355–357 (1982).
Tu, C.-P. D. & Cohen, S. N. Gene 10, 177–183 (1980).
Sutcliffe, J. G. Nucleic Acids Res. 5, 2721–2728 (1978).
Reddy, V. B. et al. Science 200, 494–502 (1978).
Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).
Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).
Noda, M. et al. Nature 295, 202–206 (1982).
Curtiss, R. III et al. in Recombinant Molecules, Impact on Science and Society (eds Beers, R. F. & Bassett, E. G.) 45–56 (Raven, New York, 1977).
Boyer, H. W. & Roulland-Dussoix, D. J. molec. Biol. 41, 459–472 (1969).
Wahl, G. M., Padgett, R. A. & Stark, G. R. J. biol. Chem. 254, 8679–8689 (1979).
Hanahan, D. & Meselson, M. Gene 10, 63–67 (1980).
Weinstock, R., Sweet, R., Weiss, M., Cedar, H. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 75, 1299–1303 (1978).
Takahashi, H., Teranishi, Y., Nakanishi, S. & Numa, S. FEBS Lett. 135, 97–102 (1981).
Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3, 345–352 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).
Schwartz, R. M. & Dayhoff, M. O. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3, 353–358 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).
Sankoff, D. Proc. natn. Acad. Sci. U.S.A. 69, 4–6 (1972).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Furutani, Y., Morimoto, Y., Shibahara, S. et al. Cloning and sequence analysis of cDNA for ovine corticotropin-releasing factor precursor. Nature 301, 537–540 (1983). https://doi.org/10.1038/301537a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/301537a0
This article is cited by
-
Molecular biology of the regulation of hypothalamic hormones
Journal of Endocrinological Investigation (1993)
-
In situ hybridization of corticotropin-releasing factor-encoding messenger RNA in the hypothalamus of the white sucker, Catostomus commersoni
Cell & Tissue Research (1992)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.