Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uncoupling of initiation site cleavage from subsequent headful cleavages in bacteriophage T1 DNA packaging

Abstract

The packaging of intracellular DNA into heads is a key feature in the morphogenesis of bacteriophage particles. In many phages a preformed empty head precursor, the prohead, is filled with DNA from a concatemeric substrate consisting of tandemly repeated genome lengths1,2. The addition of outer shell proteins completes head formation. The DNA molecules released from particles of the coliphage T1 exist as three major permutations of nucleotide sequence3,4. Such limited permutation can be explained by the modification of Streisinger's ‘headful’ mechanism proposed for phage P225,6. DNA packaging is initiated at a specific site (the pac site) on the concatemeric precursor. While this site is cleaved, subsequent cleavages (headful cleavages) are dependent only on head-filling and are not defined in terms of nucleotide sequence. Headfuls of DNA, consisting of slightly more than a genome length, are packaged in three successive cycles of head-filling to produce the permuted and terminally redundant molecules characteristic of T1 DNA. To elucidate the regulation of this process, we have studied the DNA metabolism of T1 head mutants. We describe here the properties of a mutant in gene 13.3 which is defective for headful cleavage but remains proficient in pac site cleavage. The observation in this mutant that concatemers are degraded to unit-length molecules by repeated pac site cleavage suggests a model of headful packaging in which pac site initiation and processive head-filling compete for the DNA substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Murialdo, H. & Becker, A. Microbiol. Rev. 42, 529–576 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Earnshaw, W. C. & Casjens, S. R. Cell 21, 319–331 (1980).

    Article  CAS  Google Scholar 

  3. Gill, G. S. & MacHattie, L. A. J. Molec. Biol. 104, 505–515 (1976).

    Article  CAS  Google Scholar 

  4. Ramsay, N. & Ritchie, D. A. Molec. gen. Genet. 179, 669–675 (1980).

    Article  CAS  Google Scholar 

  5. Streisinger, G., Emrich, J. & Stahl, M. M. Proc. natn. Acad. Sci. U.S.A. 57, 292–295 (1967).

    Article  ADS  CAS  Google Scholar 

  6. Tye, B. K., Huberman, J. A. & Botstein, D. J. Molec. Biol. 85, 501–532 (1974).

    Article  CAS  Google Scholar 

  7. Ritchie, D. A. & Joicey, D. H. Virology 103, 191–198 (1980).

    Article  CAS  Google Scholar 

  8. Laski, F. & Jackson, E. N. J. molec. Biol. 154, 565–579 (1982).

    Article  CAS  Google Scholar 

  9. Martin, D. T. M., Adair, C. A. & Ritchie, D. A. J. gen. Virol. 33, 309–319 (1976).

    Article  CAS  Google Scholar 

  10. Casjens, S. R. & Hendrix, R. W. J. molec. Biol. 88, 535–545 (1974).

    Article  CAS  Google Scholar 

  11. McClure, S. C. C., MacHattie, L. A. & Gold, M. Virology 54, 1–18 (1973).

    Article  CAS  Google Scholar 

  12. Kaiser, D., Syvanen, M. & Masuda, T. J. molec. Biol. 91, 175–186 (1975).

    Article  CAS  Google Scholar 

  13. Sternberg, N. & Weisberg, R. J. molec. Biol. 117, 733–759 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsey, N., Ritchie, D. Uncoupling of initiation site cleavage from subsequent headful cleavages in bacteriophage T1 DNA packaging. Nature 301, 264–266 (1983). https://doi.org/10.1038/301264a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301264a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing