Abstract
The nicotinic acetylcholine receptor (AChR) from fish electric organ and mammalian skeletal muscle is the best characterized neurotransmitter receptor (reviewed in refs 1–3). The AChR from the electroplax of the ray Torpedo californica consists of five subunits present in a molar stoichiometry of α2βγδ (refs 4–6); the apparent molecular weights of the α-, β-, γ- and δ-subunits are 40,000 (40K), 50K, 60K and 65K, respectively7–11. Knowledge of the primary structures of these constituent polypeptides would facilitate the understanding of the molecular mechanism underlying the function of the neurotransmitter receptor. Recently, we have cloned cDNA for the α-subunit precursor of the T. californica AChR and have deduced the primary structure of this polypeptide from the nucleotide sequence of the cloned cDNA12. Here we report the cloning and nucleotide analysis of cDNAs for the AChR β- and δ-subunit precursors. The primary structures of the two polypeptides deduced from the cDNA sequences reveal conspicuous amino acid sequence homology among these and the α-subunits. The three subunits contain several highly conserved regions which may be essential for the receptor function or inter-summit interaction.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Heidmann, T. & Changeux, J. P. A. Rev. Biochem. 47, 317–357 (1978).
Karlin, A. in Cell Surface Reviews Vol. 6 (eds Cotman, C. W., Poste, G. & Nicolson, G. L.) 191–260 (North-Holland, Amsterdam, 1980).
Conti-Tronconi, B. M. & Raftery, M. A. A. Rev. Biochem. 51, 491–530 (1982).
Reynolds, J. & Karlin, A. Biochemistry 17, 2035–2038 (1978).
Lindstrom, J., Merlie, J. & Yogeeswaran, G. Biochemistry 18, 4465–4470 (1979).
Raftery, M. A., Hunkapiller, M. W., Strader, C. D. & Hood, L. E. Science 208, 1454–1457 (1980).
Weill, C. L., McNamee, M. G. & Karlin, A. Biochem. biophys. Res. Commun. 61, 997–1003 (1974).
Raftery, M. A., Vandlen, R. L., Reed, K. L., Lee, T. Cold Spring Harb. Symp. quant. Biol. 40, 193–202 (1975).
Hucho, F., Bandini, G. & Suárez-Isla, B. A. Eur. J. Biochem. 83, 335–340 (1978).
Froehner, S. C. & Rafto, S. Biochemistry 18, 301–307 (1979).
Vandlen, R. L., Wu, W. C. S., Eisenach, J. C. & Raftery, M. A. Biochemistry 18, 1845–1854 (1979).
Noda, M. et al. Nature 299, 793–797 (1982).
Okayama, H. & Berg, P. Molec. cell. Biol. 2, 161–170 (1982).
Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).
Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).
Goeddel, D. V. et al. Nature 290, 20–26 (1981).
Maniatis, T., Kee, S. G., Efstratiadis, A. & Kafatos, F. C. Cell 8, 163–182 (1976).
Efstratiadis, A., Kafatos, F. C. & Maniatis, T. Cell 10, 571–585 (1977).
Slightom, J. L., Blechl, A. E. & Smithies, O. Cell 21, 627–638 (1980).
Browne, J. K. et al. Science 195, 389–391 (1977).
Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 852–862 (1975).
Steiner, D. F., Quinn, P. S., Chan, S. J., Marsh, J. & Tager, H. S. Ann. N.Y. Acad. Sci. 343, 1–16 (1980).
Ballivet, M., Patrick, J., Lee, J. & Heinemann, S. Proc. natn. Acad. Sci. U.S.A. 79, 4466–4470 (1982).
Hunt, L. T., Hurst-Calderone, S. & Dayhoff, M. O. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3, 229–249 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).
Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3, 345–352 (National Biomedical Research Foundation, Silver Spring, Maryland, 1979).
Tzartos, S. J. & Lindstrom, J. M. Proc. natn. Acad. Sci. U.S.A. 77, 755–759 (1980).
Tzartos, S. J., Rand, D. E., Einarson, B. L. & Lindstrom, J. M. J. biol. Chem. 256, 8635–8645 (1981).
Tzartos, S. J., Seybold, M. & Lindstrom, J. M. Proc. natn. Acad. Sci. U.S.A. 79, 188–192 (1982).
Karlin, A. J. gen. Physiol. 54, 245s–264s (1969).
Marshall, R. D. Biochem. Soc. Symp. 40, 17–26 (1974).
Chang, H. W. & Bock, E. Biochemistry 16, 4513–4520 (1977).
Hamilton, S. L., McLaughlin, M. & Karlin, A. Biochem. biophys. Res. Commun. 79, 692–699 (1977).
Poljak, R. J. et al. Proc. natn. Acad. Sci. U.S.A. 70, 3305–3310 (1973).
Reddy, V. B. et al. Science 200, 494–502 (1978).
Ito, H., Ike, Y., Ikuta, S. & Itakura, K. Nucleic Acids Res. 10, 1755–1769 (1982).
Weinstock, R., Sweet, R., Weiss, M., Cedar, H. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 75, 1299–1303 (1978).
Nakanishi, S. et al. Nature 278, 423–427 (1979).
McMaster, G. K. & Carmichael, G. G. Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).
Alwine, J. C., Kemp, D. J. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).
Nomoto, A. et al. Proc. natn. Acad. Sci. U.S.A. 79, 5793–5797 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Noda, M., Takahashi, H., Tanabe, T. et al. Primary structures of β- and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301, 251–255 (1983). https://doi.org/10.1038/301251a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/301251a0
This article is cited by
-
Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors
Nature Chemistry (2012)
-
Emerging approaches to probing ion channel structure and function
Neuroscience Bulletin (2012)
-
Nicotinic acetylcholine receptors: targets for commercially important insecticides
Invertebrate Neuroscience (2007)
-
Allosteric receptors after 30 years
Rendiconti Lincei (2006)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.