Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolutionary divergence of the mRNA transcription initiation mechanism in yeast

Abstract

The promoters of eukaryotic genes are being increasingly defined through the identification of consensus DNA sequences, by mutational analysis, and by in vitro and in vivo studies of transcription1–4. Whereas the TATA sequence (Goldberg–Hogness box) has been largely conserved among protein encoding genes (transcribed by RNA polymerase II) of eukaryotes5,6, there is some evidence that other structural and functional determinants of mRNA transcription are not conserved between species7,9. I report here an in vivo comparative analysis of the transcription initiation systems of the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharmyces pombe (which can both be transformed by identical plasmids10). I have found no instance in which a gene is transcribed in the same fashion in both yeasts. Instead, I have found that the in vivo transcription starting points for many different yeast genes are determined by the cell in which it is transcribed rather than its gene structure alone. The evidence also suggests that the divergence of the transcription initiation system may partly involve the mechanism or structure which determines the distance from the TATA consensus sequence to the site of transcription initiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKnight, S. L. & Kingsbury, R. Science 217, 316–324 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Benoist, C. & Chambon, P. Nature 290, 304–310 (1982).

    Article  ADS  Google Scholar 

  3. Grosschedl, R. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 79, 297–301 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Grosveld, G. C., de Boer, E., Shewmaker, C. K. & Flavell, R. A. Nature 295, 120–126 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  6. Sentenac, A. & Hall, B. in The Molecular Biology of the Yeast Saccharomyces, Vol. 2. (eds Strathern, J. N., Jones, E. & Broach, J.) (Cold Spring Harbor Laboratory, New York, in the press).

  7. Wasylyk, B., Kedinger, C., Corden, J., Brison, O. & Chambon, P. Nature 285, 367–373 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Beggs, J. D., van den Berg, J., van Ooyen, A. & Weissman, C. Nature 283, 835–840 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kiss, G. B., Pearlman, R. E., Cornish, K. V., Friesen, J. D. & Chan, V. L. J. Bact. 149, 542–547 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Beach, D. & Nurse, P. Nature 290, 140–142 (1982).

    Article  ADS  Google Scholar 

  11. Russell, P. R. & Hall, B. D. Molec. cell. Biol. 2, 106–116 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berk, A. J. & Sharp, P. A. Proc. natn. Acad. Sci. U.S.A. 75, 1274–1278 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Russell, P. R. & Hall, B. D. J. biol. Chem. (in the press).

  14. Bennetzen, J. L. & Hall, B. D. J. biol. Chem. 257, 3018–3025 (1982).

    CAS  PubMed  Google Scholar 

  15. Williamson, V., Cox, D., Young, E. T., Russell, D. & Smith, M. Molec. cell. Biol. (in the press).

  16. Faye, G. et al. Proc. natn. Acad. Sci. U.S.A. 78, 2258–2263 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Albers, T. & Kawasaki, G. Molec. appl. Genet, (in the press).

  18. Cliffon, D., Weinstock, S. B. & Fraenkel, D. G. Genetics 88, 1–11 (1978).

    Google Scholar 

  19. Broach, J. R., Strathern, J. N. & Hicks, J. B. Gene 8, 121–133 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Beggs, J. D. Nature 275, 104–108 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hinnen, A., Hicks, J. B. & Fink, G. R. Proc. natn. Acad. Sci. U.S.A. 75, 1929–1933 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Nasmyth, K. A. & Reed, S. I. Proc. natn. Acad. Sci. U.S.A. 77, 2119–2123 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, P. Evolutionary divergence of the mRNA transcription initiation mechanism in yeast. Nature 301, 167–169 (1983). https://doi.org/10.1038/301167a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301167a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing