Letter | Published:

T-system optical signals associated with inward rectification in skeletal muscle

Nature volume 301, pages 164166 (13 January 1983) | Download Citation

Subjects

Abstract

The resting potential of many excitable cells, including skeletal muscle1–4, cardiac muscle5,6, nerve cell bodies7 and egg cells8, is determined by a resting potassium conductance which shows inward rectification, allowing potassium ions to move more readily inward across the cell membrane than outward. In skeletal muscle, where inward rectification has been extensively studied, a large part of this conductance is located in the T-system membranes2,3,9–11. However, to date, only the kinetic and voltage-dependent properties of this conductance have been studied from analyses of the membrane potential or current recorded at the fibre surface. We report here measurements, obtained using a voltage-sensing dye, of potential changes in the T-system membranes associated with the inwardly rectifying K+ current. Our results show that this conductance alters the time course and significantly attenuates the amplitude of the potential change across the tubular membranes. These optical data provide new evidence for the presence of this conductance in the T-system and, when analysed using a radial cable model for the T-system, provide an estimate of the distribution of the inward rectifier conductance over the surface and T-system which is in agreement with estimates obtained by other techniques.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Archs Sci. Physiol. 3, 283–299 (1949).

  2. 2.

    & J. Physiol., Lond. 148, 127–160 (1959).

  3. 3.

    J. Physiol., Lond. 225, 33–56 (1972).

  4. 4.

    J. Physiol., Lond. 225, 57–83 (1972).

  5. 5.

    , & J. Physiol., Lond. 166, 225–240 (1963).

  6. 6.

    & J. Physiol., Lond. 286, 113–143 (1979).

  7. 7.

    & J. Physiol., Lond. 183, 287–304 (1966).

  8. 8.

    & J. membrane Biol. 18, 61–80 (1974).

  9. 9.

    & J. gen. Physiol. 53, 279–297 (1969).

  10. 10.

    & J. gen. Physiol. 67, 125–163 (1976).

  11. 11.

    & J. Physiol., Lond. 280, 169–191 (1978).

  12. 12.

    & J. gen. Physiol. 67, 265–293 (1976).

  13. 13.

    , & J. gen. Physiol. 72, 775–800 (1978).

  14. 14.

    & J. gen. Physiol. 80, 203–230 (1982).

  15. 15.

    & J. gen. Physiol. 76, 729–750 (1980).

  16. 16.

    J. Physiol., Lond. 209, 231–256 (1970).

  17. 17.

    & Nature 267, 169–170 (1977).

  18. 18.

    et al. J. membrane Biol. 33 141–183 (1977).

  19. 19.

    & Proc. R. Soc. 160, 69–123 (1964).

  20. 20.

    , & J. Physiol., Lond. 204, 207–230 (1969).

  21. 21.

    & J. Physiol., Lond. 235, 103–131 (1973).

  22. 22.

    The Mathematics of Diffusion (Clarendon, Oxford, 1956).

  23. 23.

    Applied Numerical Analysis (Addison-Wesley, London, 1978).

  24. 24.

    , , & J. membrane Biol. 44, 103–134 (1978).

Download references

Author information

Author notes

    • Frances M. Ashcroft

    Present address: University Laboratory of Physiology, Oxford OX1 3PT, UK.

Affiliations

  1. Department of Physiology, Jerry Lewis Neuromuscular Research Center, and Ahmanson Laboratory of Neurobiology, University of California, Los Angeles, California 90024, USA

    • Judith A. Heiny
    • , Frances M. Ashcroft
    •  & Julio Vergara

Authors

  1. Search for Judith A. Heiny in:

  2. Search for Frances M. Ashcroft in:

  3. Search for Julio Vergara in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/301164a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.