Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

T-system optical signals associated with inward rectification in skeletal muscle

Abstract

The resting potential of many excitable cells, including skeletal muscle1–4, cardiac muscle5,6, nerve cell bodies7 and egg cells8, is determined by a resting potassium conductance which shows inward rectification, allowing potassium ions to move more readily inward across the cell membrane than outward. In skeletal muscle, where inward rectification has been extensively studied, a large part of this conductance is located in the T-system membranes2,3,9–11. However, to date, only the kinetic and voltage-dependent properties of this conductance have been studied from analyses of the membrane potential or current recorded at the fibre surface. We report here measurements, obtained using a voltage-sensing dye, of potential changes in the T-system membranes associated with the inwardly rectifying K+ current. Our results show that this conductance alters the time course and significantly attenuates the amplitude of the potential change across the tubular membranes. These optical data provide new evidence for the presence of this conductance in the T-system and, when analysed using a radial cable model for the T-system, provide an estimate of the distribution of the inward rectifier conductance over the surface and T-system which is in agreement with estimates obtained by other techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, B. Archs Sci. Physiol. 3, 283–299 (1949).

    Google Scholar 

  2. Hodgkin, A. L. & Horowicz, P. J. Physiol., Lond. 148, 127–160 (1959).

    Article  CAS  Google Scholar 

  3. Almers, W. J. Physiol., Lond. 225, 33–56 (1972).

    Article  CAS  Google Scholar 

  4. Aimers, W. J. Physiol., Lond. 225, 57–83 (1972).

    Article  Google Scholar 

  5. Hall, A. E., Mutter, O. F. & Noble, D. J. Physiol., Lond. 166, 225–240 (1963).

    Article  CAS  Google Scholar 

  6. Cleemann, L. & Morad, M. J. Physiol., Lond. 286, 113–143 (1979).

    Article  CAS  Google Scholar 

  7. Kandel, E. R. & Taue, L. J. Physiol., Lond. 183, 287–304 (1966).

    Article  CAS  Google Scholar 

  8. Hagiwara, S. & Takahashi, K. J. membrane Biol. 18, 61–80 (1974).

    Article  CAS  Google Scholar 

  9. Eisenberg, R. S. & Gage, P. W. J. gen. Physiol. 53, 279–297 (1969).

    Article  CAS  Google Scholar 

  10. Schneider, M. F. & Chandler, W. K. J. gen. Physiol. 67, 125–163 (1976).

    Article  CAS  Google Scholar 

  11. Standen, N. B. & Stanfield, P. R. J. Physiol., Lond. 280, 169–191 (1978).

    Article  CAS  Google Scholar 

  12. Hille, B. & Campbell, D. T. J. gen. Physiol. 67, 265–293 (1976).

    Article  CAS  Google Scholar 

  13. Vergara, J., Bezanilla, F. & Salzberg, B. M. J. gen. Physiol. 72, 775–800 (1978).

    Article  CAS  Google Scholar 

  14. Heiny, J. A. & Vergara, J. J. gen. Physiol. 80, 203–230 (1982).

    Article  CAS  Google Scholar 

  15. Nakajima, S. & Gilai, A. J. gen. Physiol. 76, 729–750 (1980).

    Article  CAS  Google Scholar 

  16. Stanfield, P. R. J. Physiol., Lond. 209, 231–256 (1970).

    Article  CAS  Google Scholar 

  17. Gay, L. A. & Stanfield, P. R. Nature 267, 169–170 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Ross, W. N. et al. J. membrane Biol. 33 141–183 (1977).

    Article  CAS  Google Scholar 

  19. Falk, G. & Fatt, P. Proc. R. Soc. 160, 69–123 (1964).

    ADS  CAS  Google Scholar 

  20. Adrian, R. H., Chandler, W. K. & Hodgkin, A. L. J. Physiol., Lond. 204, 207–230 (1969).

    Article  CAS  Google Scholar 

  21. Adrian, R. H. & Peachey, L. D. J. Physiol., Lond. 235, 103–131 (1973).

    Article  CAS  Google Scholar 

  22. Crank, J. The Mathematics of Diffusion (Clarendon, Oxford, 1956).

    MATH  Google Scholar 

  23. Gerald, C. F. Applied Numerical Analysis (Addison-Wesley, London, 1978).

    Google Scholar 

  24. Ciani, S., Krasne, S., Miyazaki, S. & Hagiwara, S. J. membrane Biol. 44, 103–134 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiny, J., Ashcroft, F. & Vergara, J. T-system optical signals associated with inward rectification in skeletal muscle. Nature 301, 164–166 (1983). https://doi.org/10.1038/301164a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301164a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing