Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Order in the initial retinotectal map in Xenopus: a new technique for labelling growing nerve fibres

Abstract

Retinal nerve fibres form an orderly map of visual space in several centres in the vertebrate brain1,2. Such topographic maps are a common feature of central nervous system organization3–5, yet the way in which they develop is poorly understood. Early nerve projections in the fetal and neonatal mammalian brain have been found in several cases to be less restricted than those in the adult6–9, suggesting that nerve fibres may initially form a diffuse set of connections in then- target structure from which the adult map is sculpted by the elimination of terminals. Indeed, previous electrophysiological data indicate that the retinotectal map in Xenopus laevis might be initially disorganized10. We report here, however, that the retinotectal projection is ordered from the beginning of tectal innervation (stage 39/40). We demonstrate this first autoradiographically by tracing groups of growing ganglion cell axons which we labelled by incubating sectors of eye rudiments, before axonal outgrowth, in 3H-proline and replacing them orthotopically. Separate labelling of dorsal and ventral parts of the initial projection showed that retinal fibres are organized topographically, as in the adult1,11, in the tectal rudiment and throughout much of the pathway. Second, we show that visual responses are ordered in the tectum from the first stage that they can be mapped (stage 40). We conclude that the topographic ordering of retinotectal connections develops as a result of directed axonal outgrowth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gaze, R. M. Formation of Nerve Connections (Academic, New York, 1970).

    MATH  Google Scholar 

  2. Scalia, F. & Fite, K. J. comp. Neurol. 158, 455–478 (1974).

    Article  CAS  Google Scholar 

  3. Talbot, S. A. & Marshall, W. H. Am. J. Ophthal. 24, 1255–1263 (1941).

    Article  Google Scholar 

  4. Woolsey, C. N., Marshall, W. H. & Bard, P. Bull. Johns Hopkins Hasp. 70, 399 (1942).

    Google Scholar 

  5. Knudsen, E. I. & Konishi, M. Science 200, 795–797 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Innocenti, G. M., Fiore, L. & Cominiti, R. Neurosci. Lett. 4, 237–242 (1977).

    Article  CAS  Google Scholar 

  7. Hubel, D. H., Wiesel, T. N. & Levay, S. Phil. Trans. R. Soc. B278, 377–409 (1977).

    Article  CAS  Google Scholar 

  8. Rakic, P. Phil. Trans. R. Soc. B278, 245–260 (1977).

    Article  CAS  Google Scholar 

  9. Land, P. W. & Lund, K. R. Science 205, 698–700 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Gaze, R. M., Keating, M. J. & Chung, S.-H. Proc. R. Soc. B185, 301–330 (1974).

    ADS  CAS  Google Scholar 

  11. Fawcett, J. M. J. Embryol exp. Morph. 65, 219–233 (1981).

    CAS  PubMed  Google Scholar 

  12. Sperry, R. W. Proc. natn. Acad. Sci. U.S.A. 50, 703–710 (1963).

    Article  ADS  CAS  Google Scholar 

  13. Gaze, R. M. & Jacobson, M. Proc. R. Soc. B157, 420–448 (1963).

    ADS  Google Scholar 

  14. Gaze, R. M. & Keating, M. J. Brain Res. 21, 183–195 (1970).

    Article  CAS  Google Scholar 

  15. Meyer, R. J. comp. Neurol. 189, 273–289 (1980).

    Article  CAS  Google Scholar 

  16. Fujisawa, H., Tani, N., Watanabe, K. & Ibata, Y. Devl Biol. 90, 43–57 (1982).

    Article  CAS  Google Scholar 

  17. Shatz, C. J. & Rakic, P. J. comp. Neurol. 196, 287–307 (1981).

    Article  CAS  Google Scholar 

  18. Lance-Jones, C. & Landmesser, L. Proc. R. Soc. B214, 1–18 (1981).

    ADS  CAS  Google Scholar 

  19. Grant, P., Rubin, E. & Cima, C. J. comp. Neurol. 189, 593–613 (1980).

    Article  CAS  Google Scholar 

  20. Nieuwkoop, P. D. & Faber, J. Normal Tables of Xenopus laevis (North-Holland, Amsterdam, 1956).

    Google Scholar 

  21. Rugh, R. Experimental Embryology 3rd edn (Burgess, Minneapolis, 1962).

    Google Scholar 

  22. Holt, C. E. Nature 287, 850–852 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Scholes, J. H. Nature 278, 620–624 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Witkovsky, P., Gallin, E., Hollyfield, J. G., Ripps, H. & Bridges, C. D. B. J. Neurophysiol. 39, 1272–1287 (1976).

    Article  CAS  Google Scholar 

  25. Rager, G. Ady. Embryol. Cell Biol. 63, 1–90 (1980).

    Article  Google Scholar 

  26. Cowan, W. M., Martin, A. H. & Wenger, E. J. J. exp. Zool. 169, 71–92 (1968).

    Article  CAS  Google Scholar 

  27. McLoon, S. C. Science 215, 1418–1420 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Straznicki, C., Gaze, R. M. & Keating, M. J. J. Embryol. exp. Morph. 62, 13–35 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holt, C., Harris, W. Order in the initial retinotectal map in Xenopus: a new technique for labelling growing nerve fibres. Nature 301, 150–152 (1983). https://doi.org/10.1038/301150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing