Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chloroplast DNA exists in two orientations

Abstract

An almost universal feature of the circular chloroplast genome is a large inverted repeat sequence, some 10–25 kilobase pairs (kb) in size, which separates the remainder of the molecule into single copy regions of 80 kb and 20 kb1–3. A number of physical properties—formation of head-to-head dimers1, copy-correction between the inverted repeat segments1,3,4, resistance to intramolecular recombinational loss1–3, and maintenance of a highly stable chloroplast genome resistant to rearrangement2—have been attributed to the presence of this large inverted repeat. However, one property which an inverted repeat might be expected to confer—reversal of polarity of the single copy sequences located between the repeats1—has not yet been demonstrated for the chloroplast genome. I now show that chloroplast DNA prepared from a single plant of common bean (Phaseolus vulgaris) consists of two equimolar populations of molecules differing only in the relative orientation of their single copy sequences. A model is presented to explain these results, and comparisons are made to similar cases of inversion heterogeneity in 2-micrometre plasmid DNA from yeast5,6 and in herpes simplex virus DNA7,8.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kolodner, R. & Tewari, K. K. Proc. natn. Acad. Sci. U.S.A. 76, 41–45 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Palmer, J. D. & Thompson, W. F. Cell 29, 537–550 (1982).

    Article  CAS  Google Scholar 

  3. Gillham, N. W., Boynton, J. E. & Harris, E. H. in DNA Evolution: Natural Selection and Genome Size (ed. Cavalier-Smith) (Wiley, New York, in the press).

  4. Gordon, K. H. J., Crouse, E. J., Bohnert, H. J. & Herrmann, R. G. Theor. appl. Genet. 61, 373–384 (1982).

    Article  CAS  Google Scholar 

  5. Broach, J. R. Cell 28, 203–204 (1982).

    Article  CAS  Google Scholar 

  6. Broach, J. R., Guarascio, V. R. & Jayaram, M. Cell 29, 227–234 (1982).

    Article  CAS  Google Scholar 

  7. Roizman, B. Cell 16, 481–494 (1979).

    Article  CAS  Google Scholar 

  8. Mocarski, E. S. & Roizman, B. Proc. natn. Acad. Sci. U.S.A. 78, 7047–7051 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Gordon, K. H. J., Crouse, E. J., Bohnert, H. J. & Herrmann, R. G. Theor. appl. Genet. 59, 281–296 (1981).

    Article  CAS  Google Scholar 

  10. Palmer, J. D., Singh, G. P. & Pillay, D. T. N. Molec. gen. Genet. (in the press).

  11. Mubumbila, M., Gordon, K. H. J., Crouse, E. J., Burkard, G. & Weil, J. H. Gene (submitted).

  12. Kolodner, R. & Tewari, K. K. J. biol. Chem. 250, 8840–8847 (1975).

    CAS  PubMed  Google Scholar 

  13. Koller, B. & Delius, H. Molec. gen. Genet. 178, 261–269 (1980).

    Article  CAS  Google Scholar 

  14. Van Winkle-Swift, K. P. Curr. Genet. 1, 113–125 (1980).

    Article  CAS  Google Scholar 

  15. Scowcroft, W. R. & Larkin, P. J. Theor. appl. Genet. 60, 179–184 (1981).

    Article  CAS  Google Scholar 

  16. Palmer, J. D. & Stein, D. B. Curr. Genet. 5, 165–170 (1982).

    Article  CAS  Google Scholar 

  17. Weststrate, M. W., Geelen, J.L.M.C. & Van der Noordaa, J. J. gen. Virol. 49, 1–21 (1980).

    Article  CAS  Google Scholar 

  18. Chu, N. M., Oishi, K. K. & Tewari, K. K. Plasmid 6, 279–292 (1981).

    Article  CAS  Google Scholar 

  19. Palmer, J. D. & Thompson, W. F. Proc. natn. Acad. Sci. U.S.A. 78, 5533–5537 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Zeig, J. & Simon, M. I. Proc. natn. Acad. Sci. U.S.A. 77, 4196–4200 (1980).

    Article  ADS  Google Scholar 

  21. Bukhari, A. & Ambrosio, L. Nature 271, 575–577 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Palmer, J. D. thesis, Stanford Univ. (1981).

  23. Palmer, J. D. Nucleic Acids Res. 10, 1593–1605 (1982).

    Article  CAS  Google Scholar 

  24. Smith, G. E. & Summers, M. D. Analyt. Biochem. 109, 123–129 (1980).

    Article  CAS  Google Scholar 

  25. Maniatis, T., Jeffrey, A. & Kleid, D. G. Proc. natn. Acad. Sci. U.S.A. 72, 1184–1188 (1975).

    Article  ADS  CAS  Google Scholar 

  26. Palmer, J. D. & Thompson, W. F. Gene 15, 21–26 (1981).

    Article  CAS  Google Scholar 

  27. Pogue-Geile, K. L., Dassarma, S., King, S. R. & Jaskunas, S. R. J. Bact. 142, 992–1003 (1980).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, J. Chloroplast DNA exists in two orientations. Nature 301, 92–93 (1983). https://doi.org/10.1038/301092a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301092a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing