Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mouse type 2 Alu sequence (M2) is mobile in the genome

Abstract

The Alu and its equivalent families of interspersed repetitive DNA sequences have been found in various mammalian genomes. It has been proposed that some of them might move around the genome like known prokaryotic and eukaryotic transposable elements, as most of these sequences are flanked by short direct repeats at both ends1–7. To prove that this is the case, however, one must demonstrate the existence of homologous sequences of DNA with and without Alu insertion among the genomes of different strains or individuals of a species. While studying a polymorphic repetitive sequence (PR1) originally found in the spacer region of mouse ribosomal RNA genes8, we have now found that a sequence similar to the CHO type 2 Alu-equivalent element7, designated M2, is inserted within a PR1 sequence which is located outside the ribosomal RNA gene and that this M2 segment is flanked by a short direct repeat at both ends. Furthermore, this PR1 segment containing M2 is detected only in the BALB/c strain among the laboratory mice and wild mouse subspecies examined. These facts suggest that the M2 sequence has been inserted into PR1 sequence relatively recently during evolution of mouse strains and support the idea that at least some of the Alu-equivalent families are mobile in the genome. Recently, Grimaldi and Singer9 reported an African green monkey α-satellite sequence that was interrupted by an Alu element.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Houck, C. M., Rinchart, F. F. & Schmid, C. W. J. molec. Biol 132, 289–306 (1979).

    Article  CAS  Google Scholar 

  2. Jelinek, W. R. et al. Proc. natn. Acad. Sci. U.S.A. 77, 1389–1402 (1980).

    Article  ADS  Google Scholar 

  3. Krayev, A. S. et al. Nucleic Acids Res. 8, 1201–1215 (1980).

    Article  CAS  Google Scholar 

  4. Dhruva, B. R., Shenk, T. & Subramanisn, K. N. Proc. natn. Acad. Sci. U.S.A. 77, 4514–4518 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Elder, J. T., Pan, J., Duncan, C. H. & Weissman, S. M. Nucleic Acids Res. 9, 1171–1189 (1981).

    Article  CAS  Google Scholar 

  6. Schmid, C. W. & Jelinek, W. R. Science 216, 1065–1070 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Haynes, S. R., Toomey, T. P., Leinwand, L. & Jelinek, W. R. Molec. cell. Biol. 1, 573–583 (1981).

    Article  CAS  Google Scholar 

  8. Kominami, R., Urano, Y., Mishima, Y. & Muramatsu, M. Nucleic Acids Res. 9, 3219–3233 (1981).

    Article  CAS  Google Scholar 

  9. Grimaldi, G. & Singer, M. F. Proc. natn. Acad. Sci. U.S.A. 79, 1497–1500 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Arnheim, N. et al. Cell 22, 179–185 (1980).

    Article  CAS  Google Scholar 

  11. Miesfeld, R., Krystal, M. & Arnheim, N. Nucleic Acids Res. 9, 5981–5947 (1981).

    Article  Google Scholar 

  12. Calos, M. P. & Miller, J. H. Cell 20, 579–595 (1980).

    Article  CAS  Google Scholar 

  13. Temin, H. M. Cell 21, 599–600 (1980).

    Article  CAS  Google Scholar 

  14. Dawid, I. B., Long, E. O., DiNocera, P. P. & Pardue, M. L. Cell 25, 399–408 (1981).

    Article  CAS  Google Scholar 

  15. Van Arsdell, S. W. et al. Cell 26, 11–17 (1981).

    Article  CAS  Google Scholar 

  16. Jagadeeswaran, P., Forget, B. G. & Weissman, S. M. Cell 26, 141–142 (1981).

    Article  CAS  Google Scholar 

  17. Streek, R. E. Nature 298, 767–769 (1982).

    Article  ADS  Google Scholar 

  18. Kominami, R., Mishima, Y., Urano, Y., Sakai, M. & Muramatsu, M. Nucleic Acids Res. 10, 1963–1979 (1982).

    Article  CAS  Google Scholar 

  19. Maxam, A. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Gross-Bellard, M., Oudet, P. & Chambon, P. Eur. J. Biochem. 36, 32–38 (1973).

    Article  CAS  Google Scholar 

  21. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  22. Denhardt, D. Biochem. biophys. Res. Commun. 23, 641–652 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kominami, R., Muramatsu, M. & Moriwaki, K. A mouse type 2 Alu sequence (M2) is mobile in the genome. Nature 301, 87–89 (1983). https://doi.org/10.1038/301087a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301087a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing