Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production of RNA for secreted immunoglobulin μ chains does not require transcriptional termination 5′ to the μM exons

Abstract

The mouse immunoglobulin μ gene encodes both secreted and surface-bound μ heavy chains produced by cells of the B lymphoid series. Transcripts of the μ gene are processed into μ mRNA species which differ at their 3′ termini, bearing either ‘μS’ or ‘μM’ segments, distinguishing secreted and cell-membrane-bound μ polypeptides1–3. During maturation of surface IgM-bearing B cells to IgM-secreting plasma cells, both the total amount of μ mRNA and the ratio of μS to μM-terminated mRNA increase greatly1,3,4. Two possible mechanisms for the developmental regulation of 3′ RNA processing cannot yet be distinguished. One mechanism would yield the μS terminus by specific cleavage of a common presursor transcript encompassing both μS and the μM exons (Fig. 1), the other by regulated termination of transcription upstream from the μM exons2,5. While the first mechanism would produce, as a by-product, RNA fragments containing μM exons, the second would not. We report here the detection of such μM fragments in cells producing predominantly μS-terminated RNA species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rogers, J. et al. Cell 20, 303–312 (1980).

    Article  CAS  Google Scholar 

  2. Early, P. et al. Cell 20, 313–319 (1980).

    Article  CAS  Google Scholar 

  3. Alt, F. W. et al. Cell 20, 293–301 (1980).

    Article  CAS  Google Scholar 

  4. Perry, R. P., Kelley, D. E., Coleclough, C. & Kearney, J. F. Proc. natn. Acad. Sci. U.S.A. 78, 247–251 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Rogers, J. et al. Cell 26, 19–27 (1981).

    Article  CAS  Google Scholar 

  6. Kemp, D. J., Harris, A. W., Cory, S. & Adams, J. M. Proc. natn. Acad. Sci. U.S.A. 77, 2876–2880 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Kemp, D. J., Harris, A. W. & Adams, J. M. Proc. natn. Acad. Sci. U.S.A. 77, 7400–7404 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Cory, S., Adams, J. M. & Kemp, D. J. Proc. natn. Acad. Sci. U.S.A. 76, 4627–4631 (1980).

    Google Scholar 

  9. Alt, F. W., Rosenberg, N., Enea, V., Siden, E. & Baltimore, D. Molec. cell. Biol. 2, 386–400 (1982).

    Article  CAS  Google Scholar 

  10. Zuniga, M.-C. D., Eustachio, P. & Ruddle, N. H. Proc. natn. Acad. Sci. U.S.A. 79, 3015–3019 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Raschke, W. C., Mather, E. L. & Koshland, M. E. Proc. natn. Acad. Sci. U.S.A. 76, 3469–3472 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Köhler, G., Howe, S. C. & Milstein, C. Eur. J. Immun. 6, 292–295 (1976).

    Article  Google Scholar 

  13. Cory, S. & Adams, J. M. Cell 19, 37–51 (1980).

    Article  CAS  Google Scholar 

  14. Alwine, J. C., Kemp, D. J. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Berk, A. J. & Sharp, P. A. Proc. natn. Acad. Sci. U.S.A. 75, 1274–1278 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Sharp, P. A. Cell 23, 643–646 (1981).

    Article  CAS  Google Scholar 

  17. Dunnick, W., Rabbitts, T. H. & Milstein, C. Nature 286, 669–675 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Seidman, J. G. & Leder, P. Nature 286, 779–783 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Bothwell, A. L. M. et al. Nature 290, 65–67 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Rogers, J. & Wall, R. Proc. natn. Acad. Sci. U.S.A. 78, 7497–7501 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Baker, R. M. et al. Cell 1, 9–21 (1974).

    Article  Google Scholar 

  22. Galfré, G., Howe, S. C., Milstein, C., Butcher, G. W. & Howard, J. C. Nature 266, 550–552 (1977).

    Article  ADS  Google Scholar 

  23. Littlefield, J. W. Science 145, 709–710 (1964).

    Article  ADS  CAS  Google Scholar 

  24. Bailey, J. M. & Davidson, N. Analyt. Biochem. 70, 75–85 (1976).

    Article  CAS  Google Scholar 

  25. Adams, J. M., Gough, N. M., Webb, E. A., Jackson, J. & Cory, S. Biochemistry 19, 2711–2719 (1980).

    Article  CAS  Google Scholar 

  26. Gough, N. M., Kemp, D. J., Tyler, B. M., Adams, J. M. & Cory, S. Proc. natn. Acad. Sci. U.S.A. 77, 554–558 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Mohit, B. & Fan, K. Science 171, 75–77 (1971).

    Article  ADS  CAS  Google Scholar 

  28. Warner, N. L., Daley, M. J., Richey, J. & Spellman, C. Immun. Rev. 48, 197–243 (1979).

    Article  CAS  Google Scholar 

  29. O'Farrell, P. H., Kuttner, E. & Nakanishi, M. Molec. gen. Genet. 179, 421–435 (1980).

    Article  CAS  Google Scholar 

  30. Bolivar, F. et al. Gene 2, 95–113 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, D., Morahan, G., Cowman, A. et al. Production of RNA for secreted immunoglobulin μ chains does not require transcriptional termination 5′ to the μM exons. Nature 301, 84–86 (1983). https://doi.org/10.1038/301084a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301084a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing