Letter | Published:

Human class II major histocompatibility antigen β-chains are derived from at least three loci

Nature volume 301, pages 8284 (06 January 1983) | Download Citation

Subjects

Abstract

Class II antigens of the major histocompatibility complex (MHC) consist of two glycosylated, membrane-integrated polypeptide chains1. These cell surface-expressed molecules are involved in several immunobiological events involving cell–cell interactions2,3, most of which seem to require that genetically identical class II antigens, or other molecules controlled by the same region of the MHC, are expressed on the interacting cells4. The extensive genetic polymorphism of the class II antigens5 has rendered analyses in the human system of the number of non-allelic species of class II antigens difficult, although several laboratories have reported the existence of at least two types of human class II antigens6–9. Here we present the results of experiments using restriction enzyme digestions and separation of DNA from individuals homozygous for the MHC followed by hybridization to human class II antigen α-10,11 and β-12–14 chain cDNA probes. While the α -chain probe gave only a single hybridization band, the various β -chain probes revealed a more complex pattern that is consistent with the existence of at least three separate β -chain genes or pseudogenes in the human MHC.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Nobel Symp. Vol. 55 (eds Möller, G. & Möller, E.) (Plenum, New York, in the press).

  2. 2.

    , & Immun. Rev. 40, 181–204 (1978).

  3. 3.

    , & J. exp. Med. 145, 1071–1076 (1977).

  4. 4.

    , , , & J. exp. Med. 138, 734–739 (1973).

  5. 5.

    Br. med. Bull. 34, 3 (1978).

  6. 6.

    & Proc. natn. Acad. Sci. U.S.A. 77, 6101–6104 (1980).

  7. 7.

    , , , & J. exp. Med. 148, 1592–1611 (1978).

  8. 8.

    , , & Histocompatibility Testing, 845–860 (UCLA Press, Los Angeles, 1981).

  9. 9.

    et al. Nature 292, 357–359 (1981).

  10. 10.

    et al. Scand. J. Immun. (in the press).

  11. 11.

    et al. Cell 30, 153–161 (1982).

  12. 12.

    et al. Proc. natn. Acad. Sci. U.S.A. 79, 1703–1707 (1982).

  13. 13.

    et al. Scand. J. Immun. 14, 617–622 (1981).

  14. 14.

    et al. Proc. natn. Acad. Sci. U.S.A. 79, 3687–3691 (1982).

  15. 15.

    et al. Proc. natn. Acad. Sci. U.S.A. 71, 962–965 (1974).

  16. 16.

    & Proc. natn. Acad. Sci. U.S.A. 72, 2125–2130 (1975).

  17. 17.

    , & Proc. natn. Acad. Sci. U.S.A. 79, 545–549 (1982).

  18. 18.

    & Nature 279, 436–439 (1979).

  19. 19.

    , , & Proc. natn. Acad. Sci. U.S.A. 79, 1844–1848 (1982).

  20. 20.

    , , , & Proc. natn. Acad. Sci. U.S.A. (in the press).

  21. 21.

    , , & Nature 291, 673–675 (1981).

  22. 22.

    et al. Cell 25, 683–692 (1981).

  23. 23.

    , , & Cell 28, 489–498 (1982).

  24. 24.

    & Nature 297, 624–697 (1982).

  25. 25.

    J. molec. Biol. 98, 503–517 (1975).

Download references

Author information

Affiliations

  1. Department of Cell Research, The Wallenberg Laboratory, University of Uppsala, Box 562, S-751 22 Uppsala, Sweden

    • Jan Böhme
    • , Maurizio Denaro
    • , Per A. Peterson
    •  & Lars Rask
  2. Hagedorn Research Laboratory, DK-2820 Gentofte, Denmark

    • David Owerbach
    •  & Åke Lernmark

Authors

  1. Search for Jan Böhme in:

  2. Search for David Owerbach in:

  3. Search for Maurizio Denaro in:

  4. Search for Åke Lernmark in:

  5. Search for Per A. Peterson in:

  6. Search for Lars Rask in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/301082a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.