The deletion in a type of δ0-β0-thalassaemia begins in an inverted AluI repeat


In hereditary persistence of fetal haemoglobin (HPFH) and δ0-β0-thalassaemia, increased levels of fetal haemoglobin (HbF) are found in adult individuals. HbF production is particularly noticeable in the former condition in which HbF levels of 20–40% are found in heterozygous patients, as opposed to 5–20% in δ0-β0-thalassaemia1. In a minority of these cases, no obvious abnormalities have been found in the globin gene region by DNA mapping2–6, indicating that small deletions or perhaps even point mutations in critical DNA sequences in the globin gene cluster may be responsible for these conditions. However, most cases of HPFH and δ0-β0-thalassaemia are associated with extensive deletions in the globin gene cluster2–4,7–14. Genetic data15 and gene mapping investigations2,4,10 provided some evidence for the location of a regulatory area, whose deletion results in continuing activity of γ-globin genes in adults, in a DNA region between the Aγ- and δ-globin genes, possibly 3–4 kilobases (kb) 5′ to the δ gene. The precise nature of these sequences is of great interest, because it might help elucidate the molecular mechanisms regulating globin gene expression during development. Recently, Jagadeeswaran et al. cloned16 the DNA encompassing the region of a gene deletion in a type of HPFH2,10 and showed16 that the 5′ end point of the deletion lies in the middle of an AluI repetitive DNA sequence17,18. We have now cloned the corresponding region from the DNA of a δ0-β0-thalassaemia patient4 and we report here that the deletion ends in a different AluI sequence, 700 nucleotides 3′ to the AluI repeat involved in the HPFH deletion, and in the opposite orientation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Weatherall, D. J. & Clegg, J. B. The Thalassemia Syndromes 3rd edn (Blackwell, Oxford, 1981).

  2. 2

    Tuan, D., Murnane, M. J., De Riel, J. K. & Forget, B. G. Nature 285, 335–337 (1980).

  3. 3

    Bernards, R. & Flavell, R. A. Nucleic Acids Res. 8, 1521–1534 (1980).

  4. 4

    Ottolenghi, S. et al. Proc. natn. Acad. Sci. U.S.A. 79, 2347–2351 (1982).

  5. 5

    Old, J. M., Ayyub, H., Wood, W. G., Clegg, J. B. & Weatherall, D. J. Science 215, 981–982 (1982).

  6. 6

    Basley, J. F., Rappaport, E., Schwartz, E. & Surrey, S. Blood 59, 828–831 (1982).

  7. 7

    Mears, J. G. et al. Proc. natn. Acad. Sci. U.S.A. 75, 1222–1226 (1978).

  8. 8

    Orkin, S. H. et al. New Engl. J. Med. 299, 166–172 (1978).

  9. 9

    Ottolenghi, S. et al. Nature 278, 654–656 (1979).

  10. 10

    Fritsch, E. F., Lawn, R. M. & Maniatis, T. Nature 279, 598–603 (1979).

  11. 11

    Bernards, R., Kooter, S. M. & Flavell, R. A. Gene 6, 265–280 (1979).

  12. 12

    Tuan, D., Biro, A., de Riel, J. K., Lazarus, H. & Forget, B. G. Nucleic Acids Res. 6, 2519–2544 (1979).

  13. 13

    Jones, R. W., Old, J. M., Trent, R. J., Clegg, J. B. & Weatherall, D. J. Nature 291, 39–44 (1981).

  14. 14

    Weatherall, D. J. & Clegg, J. B. Cell 29, 7–9 (1982).

  15. 15

    Huisman, T. H. J. et al. Ann. N.Y. Acad. Sci. 232, 107–124 (1974).

  16. 16

    Jagadeeswaran, P., Tuan, D., Forget, B. G. & Weissman, S. M. Nature 296, 469–470 (1982).

  17. 17

    Jelinek, W. R. et al. Proc. natn. Acad. Sci. U.S.A. 77, 1398–1402 (1980).

  18. 18

    Schmidt, C. W. & Jelinek, W. R. Science 216, 1065–1070 (1982).

  19. 19

    Fritsch, E. F., Lawn, R. M. & Maniatis, T. Cell 19, 959–972 (1980).

  20. 20

    Duncan, C. H., Jagadeeswaran, P., Wang, R. R. C. & Weissman, S. M. Gene 13, 185–196 (1981).

  21. 21

    Fuhrman, S. A., Deininger, P. L., La Porte, P., Friedman, T. & Geidushek, E. P. Nucleic Acids Res. 9, 6439–6456 (1982).

  22. 22

    Albertini, A. M., Hofer, M., Calos, M. P. & Miller, J. H. Cell 29, 319–328 (1982).

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ottolenghi, S., Giglioni, B. The deletion in a type of δ0-β0-thalassaemia begins in an inverted AluI repeat. Nature 300, 770–771 (1982).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.