Design of a 13% efficient n-GaAs1−xPx semiconductor–liquid junction solar cell

Abstract

We report here the design of the most efficient non-aqueous semiconductor–liquid junction solar cell studied to date. Our approach involves the use of ternary semiconductor electrodes made from solid solutions of a large hand gap material, GaP, and a small band gap material, GaAs. We demonstrate here that photoanodes consisting of such materials are capable of simultaneously yielding high open circuit voltages and favourable wavelength response to the solar spectrum. A few n-type semiconductor–liquid junction solar cells in aqueous solutions have been reported to yield high (>10%) solar-to-electrical conversion efficiencies1–3. However, for most materials, rapid photoanodic corrosion dominates the interfacial photochemistry4–8. Non-aqueous solvent systems can suppress electrode decay due to corrosion4,7,8; but modest (<6%) conversion efficiencies have been observed for all photoanodes studied in solar irradiation conditions9–13. The photoanodes used here yield over 13% solar-to-electrical conversion efficiencies, or more than double the efficiency of any other non-aqueous semiconductor–liquid junction solar cell previously reported.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Parkinson, B. A., Heller, A. & Miller, B. J. electrochem. Soc. 126, 954–960 (1979).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Noufi, R. & Tench, D. J. electrochem. Soc. 127, 188–190 (1980).

    CAS  Article  Google Scholar 

  3. 3

    Kline, G., Kam, K., Canfield, D. & Parkinson, B. A. Sol. Energy Mater. 4, 301–308 (1981).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Wrighton, M. S. Acct. chem. Res. 12, 303–310 (1979).

    CAS  Article  Google Scholar 

  5. 5

    Bard, A. J. & Wrighton, M. S. J. electrochem. Soc. 124, 1706–1710 (1977).

    CAS  Article  Google Scholar 

  6. 6

    Gerischer, H. J. electroanalyt. Chem. 82, 133–143 (1977).

    CAS  Article  Google Scholar 

  7. 7

    Legg, K. D., Ellis, A. B., Bolts, J. M. & Wrighton, M. S. Proc. natn. Acad. Sci. U.S.A. 74, 4116–4120 (1977).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kohl, P. A. & Bard, A. J. J. electrochem. Soc. 126, 59–67 (1979).

    CAS  Article  Google Scholar 

  9. 9

    Langmuir, M. E., Parker, M. A. & Rauh, R. D. J. electrochem. Soc. 192, 1705–1710 (1982).

    Article  Google Scholar 

  10. 10

    Baglio, J. A. et al. J. electrochem. Soc. 129, 1461–1472 (1982).

    CAS  Article  Google Scholar 

  11. 11

    Nagasubramanian, G., Bard, A. J. J. electrochem. Soc. 128, 1055–1060 (1981).

    CAS  Article  Google Scholar 

  12. 12

    Noufi, R., Tench, D. & Warren, L. F. J. electrochem. Soc. 128, 2363–2366 (1981).

    CAS  Article  Google Scholar 

  13. 13

    Fornarini, L., Stirpe, F. & Serosati, B. J. electrochem. Soc. 129, 1155–1156 (1982).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Williams, C. K., Glisson, T. H., Hauser, J. R. & Littlejohn, M. A. J. electron. Mater. 7, 639–647 (1978).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Kohl, P. A. & Bard, A. J. J. electrochem. Soc. 126, 603–608 (1979).

    CAS  Article  Google Scholar 

  16. 16

    Bolts, J. M. & Wrighton, M. S. J. Am. chem. Soc. 101, 6179–6184 (1979).

    CAS  Article  Google Scholar 

  17. 17

    Kohl, P. A. & Bard, A. J. J. Am. chem. Soc. 99, 7531–7539 (1977).

    CAS  Article  Google Scholar 

  18. 18

    Seaman, C. H., Anspaugh, B. E., Downing, R. G. & Esrey, R. S. 14th IEEE Photo. Spec. Conf. 494–499 (1980).

  19. 19

    Bolton, J. R. Science 202, 705–711 (1978).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Tanaka, S., Bruce, J. A. & Wrighton, M. S. J. phys. Chem. 85, 3778–3787 (1981).

    CAS  Article  Google Scholar 

  21. 21

    Kautek, W. & Gerischer, H. Ber. Bunsenges Phys. Chem. 84, 645–653 (1980).

    CAS  Article  Google Scholar 

  22. 22

    Bard, A. J., Bocarsly, A. B., Fan, F.-R. R., Walton, E. G. & Wrighton, M. S. J. Am. chem. Soc. 102, 3671–3677 (1980).

    CAS  Article  Google Scholar 

  23. 23

    Heller, A., Parkinson, B. A. & Miller, B. Appl. phys. Lett. 33, 521–523 (1978).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gronet, C., Lewis, N. Design of a 13% efficient n-GaAs1−xPx semiconductor–liquid junction solar cell. Nature 300, 733–735 (1982). https://doi.org/10.1038/300733a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.