Relaxation of muscle fibres by photolysis of caged ATP

Abstract

A novel method has been developed for studying the reaction kinetics of the force-generating mechanism in muscle. Inert photolabile precursors of ATP or ADP are incorporated into muscle fibres having their surface membrane barrier removed. The nucleotide is then rapidly liberated by laser pulse photolysis. This circumvents the limitation in time resolution set by diffusion of nucleotide from the medium bathing the fibre. This laser photolysis method may be applicable to studies of the dynamic properties of many biological systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Huxley, A. F. Prog. Biophys. 7, 255–318 (1957).

    CAS  Google Scholar 

  2. 2

    Huxley, H. E. Science 164, 1356–1367 (1969).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Lymn, R. W. & Taylor, E. W. Biochemistry 10, 4617–4624 (1971).

    CAS  Article  Google Scholar 

  4. 4

    Eisenberg, E. & Greene, L. E. A. Rev. Physiol. 42, 293–309 (1980).

    CAS  Article  Google Scholar 

  5. 5

    Taylor, E. W. Crit. Rev. Biochem. 6, 103–164 (1979).

    Article  Google Scholar 

  6. 6

    Mornet, D., Bertrand, R., Pantel, P., Audermard, E. & Kassab, R. Nature 292, 301–306 (1981).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Finlayson, B., Lymn, R. W. & Taylor, E. W. Biochemistry 8, 811–819 (1969).

    CAS  Article  Google Scholar 

  8. 8

    Sleep, J. A. & Hutton, R. L. Biochemistry 17, 5423–5430 (1978).

    CAS  Article  Google Scholar 

  9. 9

    Stein, L. A., Chock, P. B. & Eisenberg, E. Proc. natn. Acad. Sci. U.S.A. 78, 1346–1350 (1981).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Kaplan, J. H., Forbush, B. III & Hoffman, J. F. Biochemistry 17, 1929–1935 (1978).

    CAS  Article  Google Scholar 

  11. 11

    McCray, J. A., Herbette, L., Kihara, T. & Trentham, D. R. Proc. natn. Acad. Sci. U.S.A. 77, 7237–7241 (1980).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Huxley, A. F. & Simmons, R. M. Cold Spring Harb. Symp. quant. Biol. 37, 669–680 (1972).

    Article  Google Scholar 

  13. 13

    White, H. D. & Taylor, E. W. Biochemistry 15, 5818–5826 (1976).

    CAS  Article  Google Scholar 

  14. 14

    Kawai, M. & Brandt, P. W. J. gen. Physiol. 68, 267–280 (1976).

    CAS  Article  Google Scholar 

  15. 15

    Bremel, R. D. & Weber, A. Nature new Biol. 238, 97–101 (1972).

    CAS  Article  Google Scholar 

  16. 16

    Bremel, R. D., Murray, J. M. & Weber, A. Cold Spring Harb. Symp. quant. Biol. 37, 267–275 (1972).

    Article  Google Scholar 

  17. 17

    Fabiato, A. & Fabiato, F. J. Physiol., Lond. 249, 497–517 (1975).

    CAS  Article  Google Scholar 

  18. 18

    Reuben, J. P., Brandt, P. W., Berman, M. & Grundfest, H. J. J. gen. Physiol. 57, 385–407 (1971).

    CAS  Article  Google Scholar 

  19. 19

    Arata, T., Mukohata, Y. & Tonomura, Y. J. Biochem. 82, 801–812 (1977).

    CAS  Article  Google Scholar 

  20. 20

    Ebashi, S., Endo, M. & Ohtsuki, I. Q. Rev. Biophys. 2, 351–384 (1969).

    CAS  Article  Google Scholar 

  21. 21

    Hibberd, M. G., Goldman, Y. E. & Trentham, D. R. Biological Structure and Coupled Flows A. Katzir Katchalsky Symp. (ed. Oplatka, A.) (in the press).

  22. 22

    Levy, R. M., Umazume, Y. & Kushmerick, M. J. Biochim. biophys. Acta 430, 352–365 (1976).

    CAS  Article  Google Scholar 

  23. 23

    Takashi, R. & Putnam, S. Analyt. Biochem. 92, 375–382 (1979).

    CAS  Article  Google Scholar 

  24. 24

    Curtin, N. A., Gilbert, C., Kretzschmar, K. M. & Wilkie, D. R. J. Physiol., Lond 238, 455–472 (1974).

    CAS  Article  Google Scholar 

  25. 25

    Hill, A. V. Proc. R. Soc. B126, 136–195 (1938).

    ADS  Google Scholar 

  26. 26

    Hill, A. V. Proc. R. Soc. B159, 297–318 (1964).

    ADS  CAS  Google Scholar 

  27. 27

    Kushmerick, M. J. & Davies, R. E. Proc. R. Soc. B174, 315–353 (1969).

    ADS  CAS  Google Scholar 

  28. 28

    Goldman, Y. E. & Simmons, R. M. J. Physiol., Lond. 269, 55–57P (1977).

    Google Scholar 

  29. 29

    Yamamoto, T. & Herzig, J. W. Pflügers Arch. ges. Physiol. 373, 21–24 (1978).

    CAS  Article  Google Scholar 

  30. 30

    Huxley, A. F. & Simmons, R. M. Nature 233, 533–538 (1971).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Naylor, G. R. S. & Podolsky, R. J. Proc. natn. Acad. Sci. U.S.A. 78, 5559–5563 (1981).

    ADS  CAS  Article  Google Scholar 

  32. 32

    dos Remedios, C. G., Millikan, R. G. C. & Morales, M. F. J. gen. Physiol. 59, 103–120 (1972).

    CAS  Article  Google Scholar 

  33. 33

    Cooke, R. Nature 294, 570–571 (1981).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Matsubara, I., Yagi, N. & Hashizume, H. Nature 255, 728–729 (1975).

    ADS  CAS  Article  Google Scholar 

  35. 35

    McElroy, W. D. & Strehler, B. L. Archs. Biochem. 22, 420–433 (1949).

    CAS  Google Scholar 

  36. 36

    Bittar, E. E. & Keh, T. J. Physiol., Lond. 302, 73–80 (1980).

    CAS  Article  Google Scholar 

  37. 37

    Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations Ch. 11 (Prentice-Hall, New Jersey, 1971).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldman, Y., Hibberd, M., McCray, J. et al. Relaxation of muscle fibres by photolysis of caged ATP. Nature 300, 701–705 (1982). https://doi.org/10.1038/300701a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.