Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alteration in the penicillin-binding profile of Bacillus megaterium during sporulation

Abstract

The development of convenient methodology to study penicillin-sensitive enzymes (PSEs) as penicillin-binding proteins (PBPs)1,2 has revealed their roles in bacterial cell shape determination, particularly in the Gram-negative rod Escherichia coli3–6. By analysing PBPs during the life cycle of Bacillus megaterium KM we report here the first data suggesting specific roles for these proteins in the morphogenesis of a Gram-positive rod. During the transition from the vegetative rod to the spherical/ellipsoidal-shaped dormant spore, novel PBPs are synthesized and existing ones are proteolytically modified. The differentiation of the dormant spore PBP profile back to that of the vegetative cell during germination, follows a defined sequence clearly correlated to specific changes in shape, culminating in a highly synchronous vegetative cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blumberg, P. M. & Strominger, J. L. J. biol. Chem. 247, 8107–8113 (1972).

    CAS  PubMed  Google Scholar 

  2. Spratt, B. G. & Pardee, A. B. Nature 254, 516–517 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Spratt, B. G. Phil. Trans. R. Soc. B289, 273–283 (1980).

    Article  CAS  Google Scholar 

  4. Matsuhashi, M. et al. in Beta-Lactam Antibiotics (ed. Mitsuhashi, S.) 203–223 (Springer, Berlin, 1981).

    Google Scholar 

  5. Ishino, F. & Matsuhashi, M. Biochem. biophys. Res. Commun. 101, 905–911 (1981).

    Article  CAS  Google Scholar 

  6. Botta, G. A. & Buffa, D. Antimicrob. Agents Chemother. 19, 891–900 (1981).

    Article  CAS  Google Scholar 

  7. Hitchins, A. D. & Slepecky, R. A. Nature 223, 804–807 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Ellar, D. J. Symp. Soc. gen. Microbiol. 28, 296–325 (1978).

    Google Scholar 

  9. Wilkinsoh, B. J., Deans, J. A. & Ellar, D. J. Biochem. J. 152, 561–569 (1975).

    Article  Google Scholar 

  10. Mandelstam, J. Proc. R. Soc. B193, 89–106 (1976).

    ADS  CAS  Google Scholar 

  11. Ryter, A., lonesco, H. & Schaeffer, P. C. r. hebd. Séanc. Acad. Sci., Paris D252, 3675–3677 (1961).

    Google Scholar 

  12. Schaeffer, P., Ionesco, H., Ryter, A. & Balassa, G. in Colloques Internationaux du CNRS, Sciences Humaines (ed. Senez, J.) 529–544 (Gordon and Breach, New York, 1963).

    Google Scholar 

  13. Pitel, D. W. & Gilvarg, C. J. biol. Chem. 245, 6711–6717 (1970).

    CAS  PubMed  Google Scholar 

  14. Tipper, D. J. & Gauthier, J. J. in Spores V (eds. Halvorson, H.O., Hanson, R. & Campbell, L. L.) 3–12 (Am. Soc. for Microbiol., Washington D. C., 1972).

    Google Scholar 

  15. Frehel, C. & Ryter, A. J. Bact. 144, 789–799 (1980).

    CAS  PubMed  Google Scholar 

  16. Tipper, D. J., Pratt, I., Guinand, M., Holt, S. C. & Linnett, P. E. in Microbiology, 1977 (ed. Schlessinger, D.) 50–68 (Am. Soc. for Microbiol., Washington D. C., 1977).

    Google Scholar 

  17. Johnstone, K. & Ellar, D.J. Biochim. biophys. Acta 714, 185–191 (1982).

    Article  CAS  Google Scholar 

  18. Hansen, J. N., Spiegelman, G. & Halvorson, H. O. Science 168, 1291–1298 (1970).

    Article  ADS  CAS  Google Scholar 

  19. Bulla, L. A. et al. CRC Crit. Rev. Microbiol. 8, 147–204 (1980).

    Article  CAS  Google Scholar 

  20. Chase, H. A., Shepherd, S. T. & Reynolds, P. E. FEBS Lett. 76, 199–203 (1977).

    Article  CAS  Google Scholar 

  21. Fordham, W. D. & Gilvarg, C. J. biol. Chem. 249, 2478–2482 (1974).

    CAS  PubMed  Google Scholar 

  22. Markiewicz, Z., Broome-Smith, J. K., Schwarz, U. & Spratt, B. G. Nature 297, 702–704 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Reynolds, P. E., Shepherd, S. T. & Chase, H. A. Nature 271, 568–570 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Taku, A., Stuckey, M. & Fan, D. P. J. biol. Chem. 257, 5018–5022 (1982).

    CAS  PubMed  Google Scholar 

  25. Mirelman, D. in Bacterial Outer Membranes (ed. Inouye, M.) 157–166 (Wiley, New York, 1979).

    Google Scholar 

  26. Tishler, P. V. & Epstein, C. J. Analyt. Biochem. 22, 89–98 (1968).

    Article  CAS  Google Scholar 

  27. Stewart, G. S. A. B., Johnstone, K., Hagelberg, E. & Ellar, D. J. Biochem. J. 198, 101–106 (1981).

    Article  CAS  Google Scholar 

  28. Ellar, D. J. & Posgate, J. A. in Spore Research, 1973 (eds Barker, A. N., Gould, G. W. & Wolf, J.) 21–40 (Academic, London, 1973).

    Google Scholar 

  29. Stewart, G. S. A. B. & Ellar, D. J. Biochem. J. 202, 231–241 (1982).

    Article  CAS  Google Scholar 

  30. Crafts-Lighty, A. & Ellar, D. J. J. appl. Bact. 48, 134–145 (1980).

    Google Scholar 

  31. Guinand, M., Vacheron, M. J., Michel, G. & Tipper, D. J. J. Bact. 138, 126–132 (1979).

    CAS  PubMed  Google Scholar 

  32. Racine, F. M. & Vary, J. C. J. Bact. 143, 1208–1214 (1980).

    CAS  PubMed  Google Scholar 

  33. Wilkinson, B. J., Ellar, D. J., Scott, I. R. & Koncewicz, M. A. Nature 266, 174–176 (1977).

    Article  ADS  CAS  Google Scholar 

  34. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  35. Bonner, W. L. & Laskey, R. A. Eur. J. Biochem. 46, 83–88 (1974).

    Article  CAS  Google Scholar 

  36. Cleveland, D. W., Fischer, S. G., Kirschner, M. W. & Laemli, U. K. J. biol. Chem. 252, 1102–1106 (1977).

    CAS  Google Scholar 

  37. Chamberlain, J. P. Analyt. Biochem. 98, 132–135 (1979).

    Article  ADS  CAS  Google Scholar 

  38. Stewart, G. & Ellar, D. J. Biochem. J. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, J., Ellar, D. Alteration in the penicillin-binding profile of Bacillus megaterium during sporulation. Nature 300, 640–643 (1982). https://doi.org/10.1038/300640a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300640a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing