Abstract
One of the fundamental rules of decollement tectonics is that decollement horizons form in mechanically weak layers1,2. Here we document two examples of decollement-style thrust faults that detach within thick platformal dolostones in preference to apparently weaker layers of shale, siltstone and limestone underlying the dolostones. The thrusts are the Keystone–Muddy Mountain–Glendale thrust system (the KMG thrust system), , and the underlying Contact–Red Spring–North Buffiington–Mormon thrust system (the CRM thrust system), both of southern Nevada. They form part of the Sevier orogenic belt, and extend for roughly 250km along strike, together showing at least 65 km tectonic overlap (Fig. 1). Although the thrust systems are closely related spatially, the higher KMG system is younger than the underlying CRM thrust system, and the two developed essentially independently3–7. Three points are important: first, that both the KMG and the CRM thrust systems are decollement style thrusts; second, that the decollement horizon is primarily restricted to a narrow stratigraphical interval within a bedded sequence of essentially homogeneous dolostones of the Middle Cambrian Bonanza King Formation; the third, that the thrust faults formed at a very shallow crustal level (<5 km).
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Kehle, R. O. Bull. geol. Soc. Am. 81, 1641–63 (1970).
Murrell, S. A. F. Geol. Soc. Lond. Spec. Publ. 9, 99–111 (1981).
Davis, G. A. Bull. geol. Soc. Am. 84, 3709–16 (1973).
Longwell, C. R. Bull. geol. Soc. Am. 84, 3717–20 (1973).
Burchfiel, B. C. et al. Geol. Soc. Am. Abstr. Prog. 13, 419 (1981).
Bohannon, R. U. S. Geol. Surv. Open File Rep. OF 81–796 (1981).
Wernicke, B. P. thesis, MIT, Cambridge (1982).
Burchfiel, B. C. & Davis, G. A. Contr. No. 1, 1–28 (California University, Riverside 1971).
Burchfiel, B. C., Fleck, R. J., Secor, D. T., Vincelette, R. R. & Davis, G. A. Bull. geol. Soc. Am. 85, 1013–22 (1974).
Carr, M. D. thesis, Rice Univ., Houston (1978).
Cameron, C. S. thesis, Rice Univ., Houston (1977).
Axen, G. J. thesis, MIT, Cambridge (1980).
Carr, M. D. Geology 8, 385–90 (1980).
Hazzard, J. C. & Mason, J. F., Bull. geol. Soc. Am. 47, 229–40 (1936).
Barnes, H. & Palmer, A. R. U.S. geol. Surv. Prof. Pap. 424 C, C100–C103 (1961).
Gans, W. T. Bull. geol. Soc. Am. 85, 189–200 (1974).
Hazzard, J. C. & Mason, J. F., Am. J. Sci. 251, 643–55 (1953).
Burchfiel, B. C. & Davis, G. A., Geol. Soc. Am. Spec. Pap. (submitted).
Guth, P. L. Bull. geol. Soc. Am. 92, 763–71 (1981).
Burchfiel, B. C., Hamill, G. S. & Wilhelms, D. E. Geol. Soc. Am. Spec. Pap. (in the press).
Willemin, J. H. J. struct. Geol. (submitted).
Longwell, C. R. Bull. Geol. Soc. Am. 37, 551–84 (1926).
Johnson, M. R. W. Geol. Mag. 118, 501–7.
Brock, W. G. & Engelder, T. Bull. Geol. Soc. Am. 88, 1667–77 (1977).
Brock, W. G. thesis, Texas A & M Univ. (1973).
Price, N. J. & Johnson, M. R. W. Tectonophysics 84, 131–50 (1982).
Gretener, P. E. Can. J. Earth Sci. 6, 1415–9 (1969).
Handin, J. C. Geol. Soc. Am. Mem. 97, 223–291 (1966).
Gretener, P. E. Bull. Can. petrol. Geol. 20, 583–607 (1972).
Hewett, D. F. U.S. Geol. Surv. Prof. Pap. 162 (1931).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Burchfiel, B., Wernicke, B., Willemin, J. et al. A new type of decollement thrusting. Nature 300, 513–515 (1982). https://doi.org/10.1038/300513a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/300513a0
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.