Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fertile females produced by inactivation of an X chromosome of ‘sex-reversed’ mice

Abstract

Sex-reversed (Sxr) is a dominant mutation that confers maleness on X/X Sxr mice1. Although its mode of inheritance is typically autosomal, all attempts to map Sxr to an autosomal chromosome have failed2. P. Burgoyne (personal communication) suggested that if Sxr were located at the end of the sex chromosomes, distal to a postulated obligatory cross-over in the X–Y pairing segment, it would show such an apparent autosomal pattern of inheritance. To test whether Sxr is located on one of the X chromosomes, and is perhaps therefore subject to X-chromosome inactivation, we have examined mice heterozygous for an X-autosome translocation, T(X; 16)H (ref. 3), such that the normal X chromosome postulated to carry Sxr is preferentially inactive. Independently, Singh and Jones4 have now shown by in situ hybridization that Sxr consists of a duplicated section of Y chromosome material that is indeed translocated to the distal terminus of one X chromatid during male meiosis5,6. Our results show that when the X chromosome carrying Sxr is preferentially inactivated, fertile T(X; 16)H/X Sxr females can be produced, owing to an associated inactivation of the male-determining Sxr sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cattanach, B. M., Pollard, C. E. & Hawkes, S. G. Cytogenetics 10, 318–337 (1971).

    Article  CAS  Google Scholar 

  2. Lyon, M. F., Cattanach, B. M. & Charlton, H. M. in Mechanisms of Sex Differentiation in Animals and Man (eds Austin, C. R. & Edwards, R. G.) 329–386 (Academic, New York, 1981).

    Google Scholar 

  3. Lyon, M. F., Searle, A. G., Ford, C. E. & Ohno, S. Cytogenetics 3, 306–323 (1964).

    Article  CAS  Google Scholar 

  4. Singh, L. & Jones, K. W. Cell 28, 208–216 (1982).

    Article  Google Scholar 

  5. Burgoyne, P. Hum. Genet. 61, 85–90 (1982).

    Article  CAS  Google Scholar 

  6. Eicher, E. M. in Prospects for Sexing Mammalian Sperm (eds Amann, R. P. & Seidel, G. E.) (Colorado Associated University Press, Colorado, in the press).

  7. Johnston, P. G. Genet. Res. 37, 317–322 (1981).

    Article  CAS  Google Scholar 

  8. McMahon, A. & Monk, M. Genet. Res. (in the press).

  9. Cattanach, B. M., Evans, E. P., Burtenshaw, M. D. & Barlow, J. Nature 300, 445–446 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Cattanach, B. M. Genet. Res. 23, 291–306 (1974).

    Article  CAS  Google Scholar 

  11. Mystkowska, E. T. & Tarkowski, A. K. J. Embryol. exp. Morph. 20, 33–52 (1968).

    CAS  PubMed  Google Scholar 

  12. Milet, R. G., Mukherjee, B. B. & Whitten, W. K. Can. J. Genet. Cytol. 14, 933–941 (1972).

    Article  Google Scholar 

  13. Ford, C. E., Evans, E. P., Burtenshaw, M. D., Clegg, H. M., Tuffrey, M. & Barnes, R. D. Proc. R. Soc. B 190, 187–197 (1975).

    ADS  CAS  Google Scholar 

  14. McLaren, A. J. Embryol. exp. Morph. 33, 205–216 (1975).

    CAS  PubMed  Google Scholar 

  15. Gearhart, J. D. & Oster-Granite, N. L. Biol. Reprod. Suppl. 24, 713–722 (1981).

    Article  CAS  Google Scholar 

  16. Falconer, D. S. & Avery, P. J. J. Embryol. exp. Morph. 43, 195–219 (1978).

    CAS  PubMed  Google Scholar 

  17. Nesbitt, M. N. Devl. Biol. 26, 252–263 (1971).

    Article  Google Scholar 

  18. McLaren, A. J. Reprod. Fert. 61, 461–467 (1981).

    Article  CAS  Google Scholar 

  19. Mittwoch, U. & Buehr, M. Differentiation 1, 219–224 (1973).

    Article  Google Scholar 

  20. McLaren, A. Nature 283, 688–689 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Polani, P. Hum. Genet. 60, 207–211 (1982).

    Article  CAS  Google Scholar 

  22. McLaren, A. & Monk, M. J. Reprod. Fert. 63, 533–537 (1981).

    Article  CAS  Google Scholar 

  23. Gartler, S. M., Rivest, M. & Cole, R. E. Cytogenet. & Cell Genet. 28, 203–207 (1980).

    Article  CAS  Google Scholar 

  24. Kratzer, P. G. & Chapman, V. M. Proc. natn. Acad. Sci. U.S.A. 78, 3093–3097 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Evans, E. P., Ford, C. E. & Lyon, M. F. Nature 267, 430–431 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Gordon, J. J. exp. Zool. 367–374 (1976).

    Article  CAS  Google Scholar 

  27. Schüpbach, T. Devl. Biol. 89, 117–127 (1982).

    Article  Google Scholar 

  28. Bücher, T., Bender, W., Fundele, R., Hofner, H. & Linke, I. FEBS Lett. 115, 319–324 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaren, A., Monk, M. Fertile females produced by inactivation of an X chromosome of ‘sex-reversed’ mice. Nature 300, 446–448 (1982). https://doi.org/10.1038/300446a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300446a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing