Male, female and intersex development in mice of identical chromosome constitution


In the preceding paper1, cytological evidence is presented to show that in ‘sex-reversed’ XX male mice2 the sex-reversing factor, Sxr, is carried on a dark-staining body located on the distal end of the paternal X chromosome. The X-chromosomal location of Sxr raises the possibility that it may be subject to the X chromosome inactivation process3. However, the regular segregation of Sxr and the absence of any indication that intersexes occur with a higher than normal frequency in Sxr stocks4 suggests that either inactivation of Sxr does not occur, or, if it does, that the proportion of cells with the Sxr-bearing X genetically active is sufficient to ensure normal testicular differentiation. Here we present information on the sexual development of chromosomally XX mice carrying Sxr in which the Sxr-bearing X chromosome is held in the inactive condition in most if not all somatic cells by use of the T(X; 16)16H (T16H) X-autosome translocated chromosome5–10 Mice of this genotype were found to develop as normal but sterile males, normal fertile females or intersexes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Evans, E. P., Burtenshaw, M. & Cattanach, B. M. Nature 300, 443–445 (1982).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Cattanach, B. M., Pollard, C. E. & Hawkes, S. G. Cytogenetics 10, 318–337 (1971).

    CAS  Article  Google Scholar 

  3. 3

    Lyon, M. F. Nature 190, 372–373 (1961).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Lyon, M. F., Cattanach, B. M. & Charlton, H. in Mechanisms of Sex Determination in Animals and Man (eds Austin, C. R. & Edwards, R. G.) 329–386 (Academic, New York, 1981).

    Google Scholar 

  5. 5

    Lyon, M. F. et al. Cytogenetics 3, 306–323 (1964).

    CAS  Article  Google Scholar 

  6. 6

    Eicher, E. M. in Prospects for Sexing Mammalian Sperm (eds Amann, C. R. & Seidell, G. E.) (Colorado University Press, 1982).

    Google Scholar 

  7. 7

    Ohno, S. & Lyon, M. F. Chromosoma 16, 90–100 (1965).

    CAS  Article  Google Scholar 

  8. 8

    Russell, L. B. & Cachiero, N. L. A. in Genetic Mosaics and Chimeras in Mammals Basic Life Sciences, Vol. 12 (ed. Russell, L. B.) 393–416 (Plenum, New York, 1978).

    Google Scholar 

  9. 9

    Tagaki, N. Chromosoma 81, 439–459 (1980).

    Article  Google Scholar 

  10. 10

    Disteche, C. M., Eicher, E. M. & Latt, S. A. Expl Cell Res. 133, 357–362 (1981).

    CAS  Article  Google Scholar 

  11. 11

    McLaren, A. & Monk, M. Nature 300, 446–448 (1982).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Gartler, S. M., Andina, R. & Gant, N. Expl Cell Res. 91, 454–457 (1975).

    CAS  Article  Google Scholar 

  13. 13

    Johnston, P. G. Genet. Res. 37, 312–322 (1981).

    Google Scholar 

  14. 14

    Evans, E. P., Ford, C. E. & Lyon, M. F. Nature 267, 430–431 (1977).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Cattanach, B. M. Genet. Res. 23, 291–306 (1974).

    CAS  Article  Google Scholar 

  16. 16

    Cattanach, B. M. A. Rev. Genet. 9, 1–18 (1975).

    CAS  Article  Google Scholar 

  17. 17

    Eicher, E. M. Adv. Genet. 15, 175–259 (1970).

    CAS  Article  Google Scholar 

  18. 18

    Ohno, S. Cell 7, 315–321 (1976).

    CAS  Article  Google Scholar 

  19. 19

    Johnston, P. & Cattanach, B. M. Genet. Res. 37, 151–160 (1981).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cattanach, B., Evans, E., Burtenshaw, M. et al. Male, female and intersex development in mice of identical chromosome constitution. Nature 300, 445–446 (1982).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.