Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Salmonella typhi uses CFTR to enter intestinal epithelial cells

Abstract

Homozygous mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF). In the heterozygous state, increased resistance to infectious diseases may maintain mutant CFTR alleles at high levels in selected populations1. Here we investigate whether typhoid fever could be one such disease. The disease is initiated when Salmonella typhi enters gastrointestinal epithelial cells for submucosal translocation2. We found that S. typhi, but not the related murine pathogen S. typhimurium, uses CFTR for entry into epithelial cells. Cells expressing wild-type CFTR internalized more S. typhi than isogenic cells expressing the most common CFTR mutation, a phenylalanine deleted at residue 508 (Δ508). Monoclonal antibodies and synthetic peptides containing a sequence corresponding to the first predicted extracellular domain of CFTR inhibited uptake of S. typhi. Heterozygous ΔF508 Cftr mice translocated 86% fewer S. typhi into the gastrointestinal submucosa than wild-type Cftr mice; no translocation occurred in ΔF508 Cftr homozygous mice. The Cftr genotype had no effect on the translocation of S. typhimurium. Immunoelectron microscopy revealed that more CFTR bound to S. typhi in the submucosa of Cftr wild-type mice than in ΔF508 heterozygous mice. We conclude that diminished levels of CFTR in heterozygotes may decrease susceptibility to typhoid fever.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uptake of different Styphi and S. typhimurium strains by epithelial cells expressing mutant ΔF508 or wild-type CFTR.
Figure 2: Inhibition of uptake of Styphi Ty2 by T84 colonic epithelial cells with reagents specific to CFTR.
Figure 3: Styphi uses CFTR to translocate from the GI lumen to the submucosa.
Figure 4: Immunoelectron micrographs of Styphi Ty2 in the submucosal space of the GI tract of mice reacted with a monoclonal antibody to CFTR.

Similar content being viewed by others

References

  1. Bertranpetit, J. & Calafell, F. in Variation in the Human Genome(eds Chadwick, D. & Cardew, G.) 97–114 (Wiley, Chichester, 1996).

    Google Scholar 

  2. Jones, B. D. & Falkow, S. Salmonellosis: host immune responses and bacterial virulence determinants. Annu. Rev. Immunol. 14, 533–561 (1996).

    Article  CAS  Google Scholar 

  3. Mills, S. D. & Finlay, B. B. Comparison of Salmonella typhi and Salmonella typhimurium invasion, intracellular growth and localization in cultured human epithelial cells. Microbiol. Path. 17, 409–423 (1994).

    Article  CAS  Google Scholar 

  4. Olsen, J. C.et al. Correction of the apical membrane chloride permeability defect in polarized cystic fibrosis airway epithelia following retroviral-mediated gene transfer. Hum. Gene Ther. 3, 253–266 (1992).

    Article  CAS  Google Scholar 

  5. Denning, G. M.et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761–764 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Pier, G. B.et al. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271, 64–67 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Cheng, S. H.et al. Functional activation of the cystic fibrosis trafficking mutant ΔF508-CFTR by overexpression. Am. J. Physiol.-Lung Cell. Mol. Physiol. 12, L615–L624 (1995).

    Article  Google Scholar 

  8. Pier, G. B., Grout, M. & Zaidi, T. S. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc. Natl Acad. Sci. USA 94, 12088–12093 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Walker, J., Watson, J., Holmes, C., Edelman, A. & Banting, G. Production and characterisation of monoclonal and polyclonal antibodies to different regions of the cystic fibrosis transmembrane conductance regulator (CFTR): detection of immunologically related proteins. J. Cell Sci. 108, 2433–2444 (1995).

    CAS  PubMed  Google Scholar 

  10. Flotte, T. R.et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc. Natl Acad. Sci. USA 90, 10613–10617 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Alpuche-Aranda, C. M., Berthiaume, E. P., Mock, B., Swanson, J. A. & Miller, S. I. Spacious phagosome formation within mouse macrophages correlates with Salmonella serotype pathogenicity and host susceptibility. Infect. Immun. 63, 4456–4462 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishibashi, Y. & Arai, T. Apossible mechanism for host-specific pathogenesis of Salmonella serovars. Microbiol. Path. 21, 435–446 (1996).

    Article  CAS  Google Scholar 

  13. Pascopella, L.et al. Host restriction phenotypes of Salmonella typhi and Salmonella gallinarum. Infect. Immun. 63, 4329–4335 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones, B. D., Ghori, N. & Falkow, S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J. Exp. Med. 180, 15–23 (1994).

    Article  CAS  Google Scholar 

  15. Colledge, W. H.et al. Generation and characterization of a ΔF508 cystic fibrosis mouse model. Nature Genet. 10, 445–452 (1995).

    Article  CAS  Google Scholar 

  16. Tsui, L. C. The cystic fibrosis transmembrane conductance regulator gene. Am. J. Respir. Crit. Care Med. 151, S47–S53 (1995).

    Article  CAS  Google Scholar 

  17. Romeo, G., Devoto, M. & Galietta, L. J. V. Why is the cystic fibrosis gene so frequent? Human Genet. 84, 1–5 (1989).

    Article  CAS  Google Scholar 

  18. Gabriel, S. E., Brigman, K. N., Koller, B. H., Boucher, R. C. & Stutts, M. J. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266, 107–109 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Cuthbert, A. W., Halstead, J., Ratcliff, R., Colledge, W. H. & Evans, M. J. The genetic advantage hypothesis in cystic fibrosis heterozygotes: a murine study. J. Physiol. (Lond) 482, 449–454 (1995).

    Article  CAS  Google Scholar 

  20. Pollitzer, R. Cholera(World Health Organization, Geneva, 1959).

    Google Scholar 

  21. Van Heyningen, W. E. & Seal, J. R. Cholera: The American Scientific Encounter, 1947–1980. 1–343 (Westview, Boulder, Colorado, 1983).

    Google Scholar 

  22. Fleiszig, S. M. J., Zaidi, T. S. & Pier, G. B. Psuedomonas aeruginosa invasion of and multiplication within corneal epithelial cells in vitro. Infect. Immun. 63, 4072–4077 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Beatty, W. L. & Sansonetti, P. J. Role of lipopolysaccharide in signaling to subepithelial polymorphonuclear leukocytes. Infect. Immun. 65, 4395–4404 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. O'Riordan, C. R.et al. Purification and characterization of recombinant cystic fibrosis transmembrane conductance regulator from Chinese hamster ovary and insect cells. J. Biol. Chem. 270, 17033–17043 (1995).

    Article  CAS  Google Scholar 

  25. Rosner, B. in Fundamentals of Biostatistics 498–503 (Duxbury, Boston, Massachusetts, 1990).

    Google Scholar 

Download references

Acknowledgements

We thank J. Olsen, J. Yankaskas and L. Johnson for CFT1 cells, A. Smith and colleagues (Genzyme) for C127 cell lines, P. Zeitlin for IB3 and C38 cells, C. Lee for advice on Salmonella uptake assays, and C. Lee and D. Kasper for reading the manuscript. This work was supported by the NIH, the Cystic Fibrosis Foundation and the Cystic Fibrosis Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald B. Pier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pier, G., Grout, M., Zaidi, T. et al. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393, 79–82 (1998). https://doi.org/10.1038/30006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30006

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing