Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dramatic decreases in brain reward function during nicotine withdrawal

Abstract

Tobacco smoking is a worldwide public health problem. In the United States alone, over 400,000 deaths and $50 billion in medical costs annually are directly attributed to smoking1. Accumulated evidence indicates that nicotine is the component of tobacco smoke that leads to addiction2, but the means by which nicotine produces addiction remain unclear. Nicotine is less effective as a positive reinforcer than other drugs of abuse in non-dependent animals3. Nevertheless, nicotine-withdrawal symptoms, including depressed mood, anxiety, irritability and craving4,5 in dependent subjects may contribute to the addictive liability of nicotine6,7. We show here that spontaneous nicotine withdrawal in rats resulted in a significant decrease in brain reward function, as measured by elevations in brain reward thresholds, which persisted for four days. Further, systemic injections of a competitive nicotinic-receptor antagonist8 led to a dose-dependent increase in brain reward thresholds in chronic nicotine-treated rats. The decreased function in brain reward systems during nicotine withdrawal is comparable in magnitude and duration to that of other major drugs of abuse9,10,11,12,13, and may constitute an important motivational factor that contributes to craving, relapse and continued tobacco consumption in humans7.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Intracranial self-stimulation (ICSS) reward thresholds in rats (expressed as a percentage of the mean (±s.e.m.) baseline reward threshold).
Figure 2: Overall somatic withdrawal signs.

References

  1. Malarcher, A. M., Chrismon, J. H., Giovino, G. A. & Erikson, M. P. Smoking-attributable mortality and years of potential life lost—United States, 1984. Morb. Mort. Weekly Rep. 46, 444–451 (1997).

    Google Scholar 

  2. Stolerman, I. P. & Jarvis, M. J. The scientific case that nicotine is addictive. Psychopharmacology 117, 2–10 (1995).

    Article  CAS  Google Scholar 

  3. Risner, M. E. & Goldberg, S. R. Acomparison of nicotine and cocaine self-administration in the dog: fixed-ratio and progressive-ratio schedules of intravenous drug infusion. J. Pharmacol. Exp. Ther. 224, 319–326 (1983).

    CAS  PubMed  Google Scholar 

  4. US Department of Health and Human Services. The Health Consequences of Smoking: Nicotine Addiction: A Report of the U.S. Surgeon General. (US Government Printing Office, WashingtonD, (1988).

  5. Hughes, J. R., Gust, S. W., Skoog, K., Keenan, R. M. & Fenwick, J. W. Symptoms of tobacco withdrawal: a replication and extension. Arch. Gen. Psychiatry 48, 52–59 (1991).

    Article  CAS  Google Scholar 

  6. Shiffman et al. Progression from a smoking lapse to relapse: prediction from abstinence violation effects, nicotinedependenc, and lapse characteristics. J. Consult. Clin. Psychol. 64, nicotinedependenc 993–1002 (1996).

    Article  CAS  Google Scholar 

  7. Markou, A., Kosten, T. R. & Koob, G. F. Neurobiological similarities in depression and drug dependence: a self medication hypothesis. Neuropsychopharmacology 18, 135–174 (1998).

    Article  CAS  Google Scholar 

  8. Damaj, M. I., Welch, S. P. & Martin, B. R. In vivo pharmacological effects of dihydro-β-erythroidine, a nicotinic antagonist, in mice. Psychopharmacology 117, 67–73 (1995).

    Article  CAS  Google Scholar 

  9. Leith, N. J. & Barrett, R. J. Amphetamine and the reward system: evidence for tolerance and post-drug depression. Psychopharmacologia 46, 19–25 (1976).

    Article  CAS  Google Scholar 

  10. Markou, A. & Koob, G. F. Postcocaine anhedonia: an animal model of cocaine withdrawal. Neuropsychopharmacology 4, 17–26 (1991).

    CAS  Google Scholar 

  11. Markou, A. & Koob, G. F. Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiol. Behav. 51, 111–119 (1992).

    Article  CAS  Google Scholar 

  12. Schulteis, G., Markou, A., Gold, L. H., Stinus, L. & Koob, G. F. Relative sensitivity to naloxone of multiple indices of opiate withdrawal: a quantitative dose–response analysis. J. Pharmacol. Exp. Ther. 271, 1391–1398 (1994).

    CAS  Google Scholar 

  13. Schulteis, G., Markou, A., Cole, M. & Koob, G. F. Decreased brain reward produced by ethanol withdrawal. Proc. Natl Acad. Sci. USA 92, 5880–5884 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Okamoto, M., Rosenberg, H. C. & Boisse, N. R. Withdrawal chracteristics following chronic pentobarbital dosing. Eur. J. Pharmacol. 40, 107–119 (1976).

    Article  CAS  Google Scholar 

  15. Gellert, V. F. & Holzman, S. G. Development and maintenance of morphine tolerance and dependence in the rat by scheduled access to morphine drinking solutions. J. Pharmacol. Exp. Ther. 205, 536–546 (1978).

    CAS  PubMed  Google Scholar 

  16. Mendelson, J. H. & Mello, N. K. Medical progress: biological concomitants of alcoholism. N. Engl. J. Med. 301, 912–921 (1979).

    Article  CAS  Google Scholar 

  17. Malin, D. H. et al. Rodent model of nicotine abstinence syndrome. Pharmacol. Biochem. Behav. 43, 779–784 (1992).

    Article  CAS  Google Scholar 

  18. Hildebrand, B. E., Nomikos, G. G., Bondjers, C., Nisell, M. & Svensson, T. H. Behavioral manifectations of the nicotine abstinence syndrome in the rat: peripheral versus central mechanisms. Psychopharmacology 129, 348–356 (1997).

    Article  CAS  Google Scholar 

  19. Malin, D. H. et al. The nicotinic antagonist mecamylamine precipitates nicotine abstinence syndrome in the rat. Psychopharmacology 115, 180–184 (1994).

    Article  CAS  Google Scholar 

  20. Malin, D. H., Lake, J. R., Carter, V. A., Cunningham, J. S. & Wilson, O. B. Naloxone precipitates nicotine abstinence syndrome in the rat. Psychopharmacology 112, 339–342 (1993).

    Article  CAS  Google Scholar 

  21. Murrin, C. L., Ferrer, J. R., Wanyun, Z. & Haley, N. J. Nicotine administration to rats: methodological considerations. Life Sci. 40, 1699–1708 (1987).

    Article  CAS  Google Scholar 

  22. Benowitz, N. L. Pharmacological aspects of cigarette smoking and nicotine addiction. N. Engl. J. Med. 319, 1318–1330 (1988).

    Article  CAS  Google Scholar 

  23. Huston-Lyons, D. & Kornetsky, C. Effects of nicotine on the threshold for rewarding brain stimulation in rats. Pharmacol. Biochem. Behav. 41, 755–759 (1992).

    Article  CAS  Google Scholar 

  24. Bauco, P. & Wise, R. A. Potentiation of lateral hypothalamic and midline mesencephalic brain stimulation reinforcement by nicotine: examination of repeated treatment. J. Pharmacol. Exp. Ther. 271, 294–301 (1994).

    CAS  PubMed  Google Scholar 

  25. Nisell, M., Nomikos, G. G. & Svensson, T. H. Infusion of nicotine in the central tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol. Toxicol. 75, 348–352 (1994).

    Article  CAS  Google Scholar 

  26. Pontieri, F. E., Tanda, G., Orzi, F. & DiChiara, G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382, 255–257 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Killen, J. D., Fortmann, S. P., Newman, B. & Varady, A. Prospective study of factors influencing the development of craving associated with smoking cessation. Psychopharmacology 105, 191–196 (1991).

    Article  CAS  Google Scholar 

  28. Hughes, J. R. et al. Smoking cessation among self-quitters. Health Psychol. 11, 331–334 (1992).

    Article  CAS  Google Scholar 

  29. Doherty, K., Kinnunen, T., Militello, F. S. & Garvey, A. J. Urges to smoke during the first month of abstinence: relationship to relapse and predictors. Psychopharmacology 119, 171–178 (1995).

    Article  CAS  Google Scholar 

  30. Kornetsky, C. & Esposito, R. U. Euphorigenic drugs: effects on the reward pathways of the brain. Fed. Proc. 38, 2473–2476 (1979).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by a Novartis grant to A.M., National Institute on Drug Abuse (NIDA, USA) grants to A.M. and G.F.K., and a HIDA Individual National Research Service Award to M.P.E.-J. This is publication number 11286-NP from The Scripps Research Institute. We thank M.Arends for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athina Markou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Epping-Jordan, M., Watkins, S., Koob, G. et al. Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393, 76–79 (1998). https://doi.org/10.1038/30001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30001

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing