Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase transition in KOH-doped hexagonal ice

Abstract

A few crystals exist which have residual entropy1,2. The most notable of these is hexagonal ice, Ih, the ordinary form of solid H2O (ref. 3). The structural interpretation of the residual entropy proposed by Pauling and widely accepted ascribes it to positional disorder of the protons in the ice conditions4. As such a disordered arrangement of the constituent atom cannot be an equilibrium structure of the crystal at the lowest temperature, there has been great interest in the search for a possible ordering phenomenon in ice crystals. We report here a calorimetric experiment which shows that a first order phase transition takes place in KOH-doped ice crystals and that the transition removes most of the residual entropy of the ice crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilkes, J. The Third Law of Thermodynamics (Oxford University Press, 1961).

    Google Scholar 

  2. Parsonage, N. G. & Staveley, L. A. K. Disorder in Crystals (Clarendon, Oxford, 1978).

    Google Scholar 

  3. Giauque, W. F. & Stout, J. W. J. Am. chem. Soc. 58, 1144–1150 (1936).

    Article  ADS  CAS  Google Scholar 

  4. Pauling, L. J. Am. chem. Soc. 57, 2680–2684 (1935).

    Article  CAS  Google Scholar 

  5. Haida, O., Matsuo, T., Suga, H. & Seki, S. J. chem. Thermodyn. 6, 815–825 (1974).

    Article  CAS  Google Scholar 

  6. Haida, O., Suga, H. & Seki, S. J. Glaciol. 22, 155–164 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Dengel, O., Eckener, V., Plitz, H. & Riehl, N. Phys. Lett. 9, 291–293 (1964).

    Article  ADS  CAS  Google Scholar 

  8. Polissar, J. & Pitzer, K. S. J. phys. Chem. 60, 1140–1142 (1956).

    Article  Google Scholar 

  9. Onsager, L. in Ferroelectricity (ed. Weller, E.) 16–19 (Elsevier, Amsterdam, 1967).

    Google Scholar 

  10. Ueda, M., Matsuo, T. & Suga, H. J. Phys. chem. Solids (in the press).

  11. Bjerrum, N. Science 115, 385–390 (1952).

    Article  ADS  CAS  Google Scholar 

  12. Tatsumi, M., Matsuo, T., Suga, H. & Seki, S. Bull. chem. Soc. Japan 48, 3060–3066 (1975).

    Article  CAS  Google Scholar 

  13. Van den Beukel, A. Phys. Stat. Solids 28, 565–568 (1968).

    Article  ADS  CAS  Google Scholar 

  14. Pick, M. A., Wenzel, H. & Engelhardt, H. Z. Naturforsch. 26A, 810–814 (1971).

    ADS  CAS  Google Scholar 

  15. Haltenorth, H. & Klinger, J. J. Solid St. Commun. 21, 523–535 (1977).

    ADS  Google Scholar 

  16. Bilgram, J. H., Roos, J. & Gränicher, H. Z. Phys. B23, 1–9 (1976).

    CAS  Google Scholar 

  17. Kawada, S. J. phys. Soc. Japan 32, 1442 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Hentschel, H. G. Molec. Phys. 38, 401–411 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Minagawa, I. J. phys. Soc. Japan. 50, 3669–3676 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tajima, Y., Matsuo, T. & Suga, H. Phase transition in KOH-doped hexagonal ice. Nature 299, 810–812 (1982). https://doi.org/10.1038/299810a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299810a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing