Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Crab Nebula's progenitor


The study of supernovae is hampered by an insufficient knowledge of the initial stellar mass for individual supernova. Because of large uncertainties in estimating both the total mass of a remnant (including the pulsar or black hole) and any mass loss during the pre-supernova stages, the main sequence mass of the progenitor cannot be accurately determined from observations alone. To calculate an initial mass, one must rely on a combination of both theory and observation. Limits on the progenitor's mass range can be estimated by the presence of a compact remnant and comparison of the observed nebular chemical abundances with detailed evolutionary calculations1. The Crab Nebula is an excellent choice for investigation because it contains a unique combination of characteristics: a central neutron star (pulsar) and a bright, well studied nebula having little or no swept-up interstellar material. In fact, several studies1–4 have suggested an initial mass of 10M for the Crab progenitor. Recently, Davidson et al.5, quoting two of us (K.N. and W.M.S.), state that the Crab's progenitor had a mass slightly larger than 8 M. Here we present in detail the reasoning behind this statement and suggest the explosion mechanism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Arnett, W. D. Astrophys. J. 195, 727–733 (1975).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Gott, J. R., Gunn, J. E. & Ostriker, J. P. Astrophys. J. Lett. 160, L91–L96 (1970).

    ADS  Article  Google Scholar 

  3. 3

    Woosley, S. E., Weaver, T. A. & Taam, R. E. in Type I Supernovae (ed. Wheeler, J. C.) 96–112 (University of Texas, Austin, 1980).

    Google Scholar 

  4. 4

    Hillebrandt, W. in Supernovae (eds Rees, M. J. & Stoneham, R. J.) 123–128 (Reidel, Dordrecht, 1982).

    Google Scholar 

  5. 5

    Davidson, K. et al. Astrophys. J. 253, 696–706 (1982).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Henry, R. C. & MacAlpine, G. M. Astrophys. J. 258, 11–21 (1982).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Arnett, W. D. Astrophys. J. Suppl. 35, 145–160 (1977).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Davidson, K. Astrophys. J. 186, 223–231 (1973).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Dennefeld, M. & Andrillat, Y. Astr. Astrophys. 103, 44–49 (1981).

    ADS  CAS  Google Scholar 

  10. 10

    Sugimoto, D. & Nomoto, K. Space Sci. Rev. 25, 155–227 (1980).

    ADS  Article  Google Scholar 

  11. 11

    Nomoto, K., Sugimoto, D. & Neo, S. Astrophys. Space Sci. 39, L37–L42 (1976).

    ADS  Article  Google Scholar 

  12. 12

    Miyaji, S., Nomoto, K., Yokoi, K. & Sugimoto, D. Publ. astr. Soc. Japan 32, 303–329 (1980).

    ADS  CAS  Google Scholar 

  13. 13

    Hoyle, F. & Fowler, W. A. Astrophys. J. 132, 565–590 (1960).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Colgate, S. A. & White, R. H. Astrophys. J. 143, 626–681 (1966).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Hillebrandt, W. Astr. Astrophys. 110, L3–L6 (1982).

    ADS  CAS  Google Scholar 

  16. 16

    Nomoto, K. in Fundamental Problems in the Theory of Stellar Evolution (eds Sugimoto, D., Lamb, D. Q. & Schramm, D. N.) 295–315 (Reidel, Dordrecht, 1981).

    Google Scholar 

  17. 17

    Weaver, T. A., Axelrod, T. S. & Woosley, S. E. in Type I Supernovae (ed. Wheeler, J. C.) 113–154 (University of Texas, Austin, 1980).

    Google Scholar 

  18. 18

    Falk, S. W. & Arnett, W. D. Astrophys. J. Suppl. 33, 515–562 (1977).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Fesen, R. A. & Kirshner, R. P. Astrophys. J. 258, 1–10 (1982).

    ADS  CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nomoto, K., Sparks, W., Fesen, R. et al. The Crab Nebula's progenitor. Nature 299, 803–805 (1982).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing