Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding

Abstract

We describe here a general method for systematically replacing amino acids in an enzyme. This allows analysis of their molecular roles in substrate binding or catalysis and could eventually lead to the engineering of new enzymatic activities. The gene encoding the enzyme is first cloned into a vector from which the enzyme is expressed and is then mutated in vitro to change a particular nucleotide and hence the amino acid sequence of the enzyme. We have cloned the gene for the tyrosyl tRNA synthetase of Bacillus stearothermophilus into a vector derived from the single-stranded bacteriophage M13 to facilitate mutagenesis with mismatched synthetic oligodeoxynucleotide primers. From the recombinant M13 clone we have obtained high levels of the enzyme (50% of soluble protein) expressed in the Escherichia coli host and have converted cysteine (Cys35) at the enzyme's active site to serine. This leads to a reduction in enzymatic activity that is largely attributable to a lower Km for ATP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Loftfield, R. B. Prog. Nucleic Acids Res. 12, 87–128 (1972).

    Article  CAS  Google Scholar 

  2. Fersht, A. R. & Jakes, R. Biochemistry 14, 3350–3356 (1975).

    Article  CAS  Google Scholar 

  3. Winter, G., Hartley, B. S., Koch, G. L. E. & Barker, D. G. (in preparation).

  4. Barker, G. Eur. J. Biochem. 125, 357–360 (1982).

    Article  CAS  Google Scholar 

  5. Bhat, T. N., Blow, D. M., Brick, P. & Nyborg, J. J. molec. Biol. 158, 699–709 (1982).

    Article  CAS  Google Scholar 

  6. Monteilhet, C. & Blow, D. M. J. molec. Biol. 122, 407–417 (1978).

    Article  CAS  Google Scholar 

  7. Rubin, J. & Blow, D. M. J. molec. Biol. 145, 489–500 (1981).

    Article  CAS  Google Scholar 

  8. Winter, G. P., Koch, G. L. E., Dell, A. & Hartley, B. S. in Transfer RNA: Structure Properties and Recognition (eds Schimmel, P. R., Soll, D. & Abelson, J. N.) 255–265 (Cold Spring Harbor Laboratory, New York, 1979).

    Google Scholar 

  9. Barker, D. G. & Winter, G. FEBS Lett. 145, 191–193 (1982).

    Article  CAS  Google Scholar 

  10. Zoller, M. & Smith, M. Meth. Enzym. (in the press).

  11. Hutchison, C. A. III et al. J. biol. Chem. 253, 6551–6560 (1978).

    CAS  PubMed  Google Scholar 

  12. Smith, M. & Gillam, S. in Genetic Engineering Vol. 3 (eds Setlow, J. K. & Hollaender, A.) 1 (Plenum, New York, 1981).

    Book  Google Scholar 

  13. Wasylyk, B. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7024–7028 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Miyada, C. G., Soberon, X., Itakura, K. & Wilcox, G. Gene 17, 167–177 (1982).

    Article  CAS  Google Scholar 

  15. Gillam, S., Waterman, K. & Smith, M. Nucleic Acids Res. 2, 625–634 (1975).

    Article  CAS  Google Scholar 

  16. Wallace, R. B., Schold, M., Johnson, M. J., Dembek, P. & Itakura, K. Nucleic Acids Res. 9, 3647–3657 (1981).

    Article  CAS  Google Scholar 

  17. Suggs, S. V., Wallace, R. B., Hirose, T., Kawashima, E. & Itakura, K. Proc. natn. Acad. Sci. U.S.A. 78, 6613–6617 (1982).

    Article  ADS  Google Scholar 

  18. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Clewell, D. B. & Helinski, D. R. J. Bact. 110, 1135–1146 (1972).

    CAS  PubMed  Google Scholar 

  20. Hohn, B., Lechner, H. & Marvin, D. A. J. molec. Biol. 56, 143–154 (1971).

    Article  CAS  Google Scholar 

  21. Barker, D. G., Bruton, C. J. & Winter, G. (in preparation).

  22. McElroy, W. D., De Luca, M. & Travis, J. Science 157, 151–160 (1967).

    ADS  Google Scholar 

  23. Fersht, A. R. Biochemistry 14, 5–12 (1975).

    Article  CAS  Google Scholar 

  24. Kerr, A. K., Ashmore, J. P. & Koetzle, T. F. Acta crystallogr. B31, 2022–2026 (1975).

    Article  Google Scholar 

  25. Kistenmacher, T. J., Rand, G. A. & Marsh, R. E. Acta Crystallogr. B30, 2573–2578 (1974).

    Article  Google Scholar 

  26. Crampton, M. R. in Chemistry of the −SH group (ed. Patai, S.) 379–415 (Wiley-Inter-science, New York, 1974).

    Google Scholar 

  27. Paul, I. C. in Chemistry of the −SH group (ed. Patai, S.) 111–149 (Wiley-Interecience, New York, 1974).

    Google Scholar 

  28. Fersht, A. R. & Dingwall, C. Biochemistry 18, 1245–1249 (1979).

    Article  CAS  Google Scholar 

  29. Heinrikson, R. L. & Hartley, B. S. Biochem. J. 105, 17–24 (1967).

    Article  CAS  Google Scholar 

  30. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1978).

    Article  Google Scholar 

  31. Hong, G. F. Biosci. Rep. 1, 243–252 (1981).

    Article  CAS  Google Scholar 

  32. Messing, J. Recombinant DNA Tech. Bull. 2, 43–48 (1979).

    CAS  Google Scholar 

  33. Cohen, S. N., Chang, A. C. Y. & Hsu, L. Proc. natn. Acad. Sci. U.S.A. 69, 2110–2114 (1972).

    Article  ADS  CAS  Google Scholar 

  34. Winter, G. & Fields, S. Nucleic Acids Res. 8, 1965–1974 (1980).

    Article  CAS  Google Scholar 

  35. Grunstein, M. & Hogness, D. S. Proc. natn. Acad. Sci. U.S.A. 72, 3961–3965 (1975).

    Article  ADS  CAS  Google Scholar 

  36. Denhardt, D. T. Biochem. biophys. Res. Commun. 23, 641–646 (1966).

    Article  CAS  Google Scholar 

  37. Laemmli, U. K. Nature 227, 680–683 (1970).

    Article  ADS  CAS  Google Scholar 

  38. Atkinson, A. et al. J. appl. Biochem. 1, 247–258 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, G., Fersht, A., Wilkinson, A. et al. Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding. Nature 299, 756–758 (1982). https://doi.org/10.1038/299756a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299756a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing