Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The energetic afterglow of the γ-ray burst of 14 December 1997

Abstract

The discovery of fading but relatively long-lived X-ray emission1 accompanying γ-ray bursts has revolutionized the study of these objects. This ‘afterglow’ is most easily explained by models2,3,4 similar to those describing supernovae, but with relativistic ejecta. And as with supernovae, afterglow measurements should in principle provide important constraints on burst properties, permitting, for example, estimates of the amount of energy released, the geometry of the emitting surface and the density of the ambient medium. Here we report infrared observations of the fading optical transient5 associated with the burst of 14 December 1997 (GRB971214; ref. 6). We detect a ‘break’ in the broad-band spectrum, as predicted by afterglow models, which constrains the total energy in the burst to be >1051 erg. Combining the fluence of optical afterglow with the redshift (z = 3.42; ref. 7), we estimate that the energy released in the afterglow alone was 2× 1051 erg. Estimates of afterglow energetics are less likely to be subject to geometric effects—such as beaming—that render uncertain estimates of the total burst energy, but it nevertheless appears from our measurements that γ-ray bursts may be much more energetic than the 1051 erg usually assumed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ks-band image of the field of the optical transient (OT) of GRB971214 obtained using NIRC.
Figure 2: The optical/near-infrared broad-band spectrum of GRB971214 at epoch 1997 December 15.58 ut, 0.58 d after the burst.

Similar content being viewed by others

References

  1. Costa, E.et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783–785 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Mészáros, P. & Rees, M. J. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–237 (1997).

    Article  ADS  Google Scholar 

  3. Vietri, M. The afterglow of gamma-ray bursts: the cases of GRB 970228 and GRB 970508. Astrophys. J. 488, 232–237 (1997).

    Article  Google Scholar 

  4. Waxman, E. Gamma-ray-burst afterglow: supporting the cosmological fireball model, constraining parameters, and making prediction. Astrophys. J. 485, L5–L8 (1997).

    Article  ADS  Google Scholar 

  5. Halpern, J., Thorstensen, J., Helfand, D. & Costa, E. IAU Circ. No. 6788(1997).

    Google Scholar 

  6. Heise, J.et al. IAU Circ. No. 6787(1997).

    Google Scholar 

  7. Kulkarni, S. R.et al. Identification of a host galaxy at redshift z = 3.42 for the γ-ray burst of 14 December 1997. Nature 393, 35–39 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Antonelli, L. A.et al. IAU Circ. No. 6792(1997).

    Google Scholar 

  9. Matthews, K. & Soifer, B. T. in Infrared Astronomy with Arrays(ed. McLean, I.) 239–246 (Kluwer, Dordrecht, (1994).

    Book  Google Scholar 

  10. Halpern, J. P., Thorstensen, J. R., Helfand, D. J. & Costa, E. Optical afterglow of the γ-ray burst of 14 December 1997. Nature 393, 41–43 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M. & Adelberger, K. Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. 462, L17–L21 (1996).

    Article  ADS  Google Scholar 

  12. Wijers, R. A. M. J., Rees, M. J. & Mèszàros, P. Shocked by GRB 970228: the afterglow of a cosmological fireball. Mon. Not. R. Astron Soc. 288, L51–L56 (1997).

    Article  ADS  Google Scholar 

  13. Sokolov, V. V.et al. BVRCIC photometry of GRB 970508 optical remnant: May–August, 1997. Astron. Astrophys.(in the press); also preprint http://xxx.lanl.gov, astro-ph/9802341(1998).

  14. Pedersen, H.et al. Evidence for diverse optical emission from gamma-ray burst sources. Astrophys. J. 496, 311–315 (1998).

    Article  ADS  Google Scholar 

  15. Galama, T. J.et al. Optical follow-up of GRB 970508. Astrophys. J.(in the press); also preprint http://xxx.lanl.gov, astro-ph/9802160(1998).

  16. Waxman, E. Gamma-ray burst afterglow: confirming the cosmological fireball model. Astrophys. J. 489, L33–L35 (1997).

    Article  ADS  Google Scholar 

  17. Waxman, E., Kulkarni, S. R. & Frail, D. A. Implications of the radio afterglow from the gamma-ray burst of May 8, 1997. Astrophys. J. 497, 288–293 (1998).

    Article  ADS  Google Scholar 

  18. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J.(in the press).

  19. Diercks, A.et al. IAU Circ. No. 6791(1997).

    Google Scholar 

  20. Tanvir, N., Wyse, R., Gilmore, G. & Corson, C. IAU Circ. No. 6796(1997).

    Google Scholar 

  21. Reichart, D. E. The host galaxy of GRB 971214. Astrophys. J.(submitted); preprint http://xxx.lanl.gov, astro-ph/9801139(1998).

  22. Frail, D. A., Kulkarni, S. R., Nicastro, L., Feroci, M. & Taylor, G. B. The radio afterglow from the γ-ray burst of 8 May 1997. Nature 389, 261–263 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Kippen, R. M.et al. IAU Circ. No. 6789(1997).

    Google Scholar 

  24. Narayan, R., Paczynski, B. & Piran, T. Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. 395, L83–L86 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Rees, M. J. & Mészáros, P. Refreshed shocks and afterglow longevity in gamma-ray bursts. Astrophys. J. 496, L1–L4 (1998).

    Article  ADS  Google Scholar 

  26. Henden, A. A., Luginbuhl, C. B. & Vrba, F. J. GCN Note No. 0.16(1997); http://gcn.gsfc.nasa.gov/gcn/gcn3.

    Google Scholar 

  27. Fukugita, M., Shimasaku, K. & Ichikawa, T. Galaxy colors in various photometric band systems. Publ. Astron. Soc. Pacif. 107, 945–958 (1995).

    Article  ADS  Google Scholar 

  28. Bessell, M. S. in Stellar Photometry—Current Techniques and Future Developments(eds Butler, C. J. & Elliot, I.) 22–39 (IAU Colloq. 136, Cambridge Univ. Press, (1992).

    Google Scholar 

  29. Paczynski, B. Are gamma-ray bursts in star-forming regions? Astrophys. J. 494, L45–L48 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The W. M. Keck Observatory is operated by the California Association for Research in Astronomy, a scientific partnership among California Institute of Technology, the University of California and NASA. It was made possible by financial support from the W. M. Keck Foundation. The VLA is a facility of the NSF operated under cooperative agreement by associated Universities, Inc. We thank W. Sargent, Director of Palomar Observatory, F. Chaffee, Director of the Keck Observatory and our colleagues for their continued support of our GRB program. S.R.K.'s research is supported by the NSF and NASA. S.G.D. acknowledges partial support from the Bressler Foundation. A.N.R. thanks the International Astronomical Union for a travel grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramaprakash, A., Kulkarni, S., Frail, D. et al. The energetic afterglow of the γ-ray burst of 14 December 1997. Nature 393, 43–46 (1998). https://doi.org/10.1038/29941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29941

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing