Space shuttle ice nuclei

Abstract

With the advent of the space shuttle era, increasing rocket activity is expected in the Earth's upper atmosphere. The space shuttle solid-fuelled booster rockets emit 150 tonnes of alumina (Al2O3) particles per launch, much of which spreads throughout the upper troposphere and stratosphere1. Such particles can seed aerosols and clouds, and might therefore cause changes in the terrestrial radiation balance and climate2. Estimates are made here showing that average ice nuclei concentrations in the upper troposphere could increase by a factor of 2, and that an aluminium dust layer weighing up to 1,000 tonnes might eventually form in the lower stratosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Potter, A. E. Proc. Space Shuttle Environmental Assessment Workshop on Stratospheric Effects (NASA TM X-58198, Houston, Texas, 1977).

    Google Scholar 

  2. 2

    Pollack, J. B. et al. J. geophys. Res. 81, 1071–1083 (1976).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Brownlee, D. E., Ferry, G. V. & Tomandl, D. Science 191, 1270–1271 (1976).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Hofmann, D. J., Carroll, D. E. & Rosen, J. M. Geophys. Res. Lett. 2, 113–116 (1975).

    ADS  Article  Google Scholar 

  5. 5

    Pollack, J. B., Toon, O. B., Summers, A., Van Camp, W. & Baldwin, B. J. appl. Met. 15, 247–258 (1976).

    CAS  Article  Google Scholar 

  6. 6

    Turco, R. P. et al. J. appl. Met. 19, 78–89 (1980).

    CAS  Article  Google Scholar 

  7. 7

    Hobbs, P. V. Ice Physics (Oxford University Press, 1974).

    Google Scholar 

  8. 8

    Parungo, F. P. & Allee, P. A. J. appl. Met. 17, 1856–1863 (1978).

    CAS  Article  Google Scholar 

  9. 9

    Parungo, F. P. & Allee, P. A. J. appl. Met. 19, 128–130 (1980).

    Article  Google Scholar 

  10. 10

    Hindman, E. E., II, & Lala, G. G. J. appl. Met. 19, 122–128 (1980).

    Article  Google Scholar 

  11. 11

    Hindman, E. E., Radke, L. F. & Eltgroth, M. W. J. appl. Met. (submitted).

  12. 12

    Hindman, E. E. II, Garvey, D. M., Langer, G., Odencrantz, F. K. & Gregory, G. L. J. appl. Met. 19, 175–184 (1980).

    CAS  Article  Google Scholar 

  13. 13

    Hindman, E. E. & Finnegan, W. G. Pap. 8th Conf. on Inadvertent and Planned Weather Modification, Reno (1981).

  14. 14

    Turco, R. P., Hamill, P., Toon, O. B., Whitten, R. C. & Kiang, C. S. J. atmos. Sci. 36, 699–717 (1979); The NASA-Ames Research Center Stratospheric Aerosol Model I. Physical Processes and Computational Analogs (NASA TP 1362, 1979).

    Google Scholar 

  15. 15

    Turco, R. P., Toon, O. B., Hamill, P. & Whitten, R. C. J. geophys. Res. 86, 1113–1128 (1981).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Hamill, P., Turco, R. P., Toon, O. B., Kiang, C. S. & Whitten, R. C. J. Aerosol Sci. (in the press).

  17. 17

    Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation Ch. 9 (Reidel, Dordrecht, 1978).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Turco, R., Toon, O., Whitten, R. et al. Space shuttle ice nuclei. Nature 298, 830–832 (1982). https://doi.org/10.1038/298830a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.