Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pluripotent embryonic stem cell lines can be derived from tw5/tw5 blastocysts

Abstract

Mouse embryos homozygous for tw5, a recessive lethal mutation in the t complex located on chromosome 17, develop normally until the elongated egg cylinder stage, approximately 6.5 days after fertilization. At this time, the endoderm is morphologically abnormal and the embryonic ectoderm begins to show signs of pyknosis. Death of the embryo usually occurs within the next 2 days (ref. 1). A serious difficulty in the study of lethal t-mutant gene expression during embryogenesis has been to obtain appropriate experimental material, particularly during the period immediately following implantation. Recently, a method involving the use of teratocarcinoma-conditioned medium was devised for establishing pluripotent stem cell cultures directly from the inner cell mass (ICM) of a normal mouse blastocyst2. Using this method, we have established three embryonic stem cell lines derived from embryos carrying tw5. We report here that one of the cell lines is homozygous for the mutation (tw5/tw5), whereas the other two are heterozygous (+/tw5). When injected into athymic mice, each cell line is capable of forming tumours that contain differentiated derivatives of all three primary germ layers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Bennett, D. & Dunn, L. C. J. Morph. 103, 135–157 (1958).

    Article  Google Scholar 

  2. Martin, G. R. Proc. natn. Acad. Sci. U.S.A. 78, 7634–7638 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Solter, D. & Knowles, B. B. Proc. natn. Acad. Sci. U.S.A. 75, 5565–5569 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Silver, L. M. Cell 27, 239–240 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Artzt, K., Shin, H-.S. & Bennett, D. Cell 28, 471–476 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Bennett, D. Cell 6, 441–454 (1975).

    Article  Google Scholar 

  7. Sherman, M. I. & Wudl, L. R. in Concepts in Mammalian Embryogenesis (ed. Sherman, M. I.) 136–234 (MIT Press, 1977).

    Google Scholar 

  8. Lyon, M. F. Symp. zool. Soc. Lond. 47, 455–477 (1981).

    Google Scholar 

  9. Magnuson, T. & Epstein, C. J. Biol. Rev. 56, 369–408 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Silver, L. M., White, M. & Artzt, K. Proc. natn. Acad. Sci. U.S.A. 77, 6077–6080 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Silver, L. M., Artzt, K. & Bennett, D. Cell 17, 275–284 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Shin, H-.S., Stavenezer, J., Artzt, K. & Bennett, D. Cell (in the press).

  13. Silver, L. M. Cell (in the press).

  14. Martin, G. R., Wiley, L. M. & Damjanov, I. Devl Biol. 61, 230–244 (1977).

    Article  CAS  Google Scholar 

  15. Wudl, L. R., Sherman, M. I. & Hillman, N. Nature 270, 137–140 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wudl, L. R. & Sherman, M. I. Cell 9, 523–531 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. Hogan, B., Spiegelman, M. & Bennett, D. J. Embryol. exp. Morph. 60, 419–428 (1980).

    CAS  PubMed  Google Scholar 

  18. O'Farrell, P. H. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  19. Steinmetz, M. et al. Cell 24, 125–134 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnuson, T., Epstein, C., Silver, L. et al. Pluripotent embryonic stem cell lines can be derived from tw5/tw5 blastocysts. Nature 298, 750–753 (1982). https://doi.org/10.1038/298750a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298750a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing