Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod mutants

Abstract

Nitrogen-fixing root nodules are formed by the multi-step interaction of an endosymbiotic bacterium in the genus Rhizobium and a plant host of the legume family1. Identifying the bacterial and host genes involved in each step of this process is necessary to elucidate the molecular basis of the symbiosis, and is an important prerequisite for improving existing symbiotic associations or extending the range of symbioses. One way of identifying such genes is through the isolation and characterization of mutants that affect the symbiosis2–7. We have previously described the isolation of nodulation defective (Nod) mutants of Rhizobium meliloti6,8. However, the functions of the nodulation (nod) genes defined by these mutations are not understood. As a first step in the molecular genetic characterization of nod genes, we describe here the cloning, by direct selection, of nod genes which complement the nodulation defect of a Nod R. meliloti mutant. We have used a broad host range cosmid as a vector for large R. meliloti DNA inserts. This system should be generally useful for genetic studies of other Gram-negative bacteria which cannot easily be transformed; combined with the strategy of direct selection, it may be especially applicable to the study of virulence genes in pathogenic bacteria. Using the cloned R. meliloti nodulation gene obtained by this method, and a series of overlapping members of a cosmid clone bank extending from the nif locus, we have found that the gene(s) for nodulation are located within 30 kilobase pairs (kbp) of the nif loci, on the R. meliloti nifK side of the three structural genes for nitrogenase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vincent, J. M. in The Biology of Nitrogen Fixation (ed. Quispel, A.) 265–341 (North-Holland, Amsterdam, 1974).

    Google Scholar 

  2. Beringer, J. E., Beynon, J. L., Buchanan-Wollaston, V. & Johnston, A. W. B. Nature 276, 633–634 (1978).

    Article  ADS  Google Scholar 

  3. Johnston, A. W. B. et al. Nature 276, 634–663 (1978).

    Article  ADS  Google Scholar 

  4. Buchanan-Wollaston, V., Beringer, J. E., Brewin, N. J., Hirsch, P. R. & Johnston, A. W. B. Molec. gen. Genet. 178, 185–190 (1980).

    Article  CAS  Google Scholar 

  5. Ruvkun, G. B. & Ausubel, F. M. Nature 289, 85–88 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Meade, H. M., Long, S. R., Ruvkun, G. B., Brown, S. E. & Ausubel, F. M. J. Bact. 149, 114–122 (1982).

    CAS  PubMed  Google Scholar 

  7. Rolfe, B. G. et al. in Current Perspectives in Nitrogen Fixation (eds Gibson, A. H. & Newton, W. E.) 142–145 (Australian Academy of Sciences, Canberra, 1981).

    Google Scholar 

  8. Long, S. R., Meade, H. M., Brown, S. E. & Ausubel, F. M. in Genetic Engineering—Plant Sciences (ed. Panopoulos, N. J.) 129–143 (Praeger, New York, 1981).

    Google Scholar 

  9. Ruvkun, G. B., Long, S. R., Meade, H. M. & Ausubel, F. M. Cold Spring Harb. Symp. quant. Biol. 45, 492–499 (1981).

    Article  Google Scholar 

  10. Brewin, N. J., Beringer, J. E. & Johnston, A. W. B. J. gen. Microbiol. 120, 413–420 (1980).

    Google Scholar 

  11. Friedman, A. M., Long, S. R., Brown, S. E., Buikema, W. J. & Ausubel, F. M. Gene (in the press).

  12. Banfalvi, Z. et al. Molec. gen. Genet. 184, 318–325 (1981).

    CAS  PubMed  Google Scholar 

  13. Rosenberg, C., Boistard, P., Denarie, J. & Casse-Delbart, F. L. Molec. gen. Genet. 184, 326–333 (1981).

    CAS  PubMed  Google Scholar 

  14. Hohn, B. & Collins, J. Gene 11, 291–298 (1980).

    Article  CAS  Google Scholar 

  15. Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. R. Proc. natn. Acad. Sci. U.S.A. 77, 7347–7351 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Figurski, D. H. & Helinski, D. R. Proc. natn. Acad. Sci. U.S.A. 76, 1648–1652 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Hohn, B. Meth. Enzym. 68, 299–309 (1979).

    Article  CAS  Google Scholar 

  18. Sternberg, N., Tiemeier, D. & Enquist, L. Gene 1, 255–280 (1977).

    Article  CAS  Google Scholar 

  19. Boyer, H. B. & Roulland-Dussoix, D. J. molec. Biol. 41, 459–472 (1969).

    Article  CAS  Google Scholar 

  20. Ish-Horowicz, D. & Burke, J. F. Nucleic Acids Res. 9, 2989–2998 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, S., Buikema, W. & Ausubel, F. Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod mutants. Nature 298, 485–488 (1982). https://doi.org/10.1038/298485a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298485a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing