Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Soil carbon pools and world life zones


Soil organic carbon in active exchange with the atmosphere constitutes approximately two-thirds of the carbon in terrestrial ecosystems1,2. The relatively large size and long residence time of this pool (of the order of 1,200 yr) make it a potentially important sink for carbon released to the atmosphere by fossil fuel combustion; however, in many cases, human disturbance has caused a decrease in soil carbon storage3,4. Various recent estimates place the global total of soil carbon between 700 (ref. 2) and 2,946 × 1015 g (ref. 5) with several intermediate estimates: 1,080 (ref. 1), 1,392 (ref. 6), 1,456 (ref. 3), and 2,070 × 1015g (ref. 7). Schlesinger's3 estimate seems to be based on the most extensive data base (200 observations, some of which are mean values derived from large studies in particular areas) and is widely cited in carbon cycle studies. In addition to estimating the world soil carbon pool, it is important to establish the relationships between the geographical distribution of soil carbon and climate, vegetation, human development and other factors as a basis for assessing the influence of changes in any of these factors on the global carbon cycle. Our analysis of 2,700 soil profiles, organized on a climate basis using the Holdridge life-zone classification system8, indicates relationships between soil carbon density and climate, a major soil forming factor. Soil carbon density generally increases with increasing precipitation, and there is an increase in soil carbon with decreasing temperature for any particular level of precipitation. When the potential evapotranspiration equals annual precipitation, soil carbon density9 is 10 kg m−2, exceptions to this being warm temperate and subtropical soils. Based on recent estimates of the areal extent of major ecosystem complexes9,10 which correspond well with climatic life zones, the global soil organic carbon pool is estimated to be 1,395 × 1015g.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Baes, C. F., Goeller, H. E., Olson, J. S. & Rotty, R. M. Am. Scient. 65, 310–320 (1977).

    ADS  Google Scholar 

  2. Bolin, B. Scient. Am. 223, 136–146 (1970).

    Article  Google Scholar 

  3. Schlesinger, W. H. A. Rev. Ecol. System. 8, 51–81 (1977).

    CAS  Article  Google Scholar 

  4. Jenny, H. The Soil Resource, Origin and Behavior (Springer, New York, 1980).

    Book  Google Scholar 

  5. Bohn, H. L. J. Am. Soil Sci. Soc. 40, 468–470 (1976).

    ADS  Article  Google Scholar 

  6. Bazilevich, N. L. in Proc. 1st int. Congress of Ecology (ed. Cave, A. J.) 47–51 (Junk, The Hague, 1974).

  7. Ajtay, G. L., Ketner, P. & Duvigneaud, P. in The Global Carbon Cycle—SCOPE Vol. 13 (eds Bolin, B., Degens, E. T., Kempe, S. & Ketner, P.) 129–181 (Wiley, New York, 1979).

    Google Scholar 

  8. Holdridge, L. R. Science 105, 367–388 (1947).

    ADS  CAS  Article  Google Scholar 

  9. Olson, J. S., Pfuderer, H. A. & Chan, Y.-H. Changes in the Global Carbon Cycle and the Biosphere, ORNL/EIS-109 (Oak Ridge National Laboratory, Tennessee, 1978).

    Google Scholar 

  10. Olson, J. S. & Watts, J. A. in Carbon Dioxide Review (ed. Clarke, W.) (Oxford University Press, in the press).

  11. Jenny, H. Factors of Soil Formation (McGraw-Hill, New York, 1941).

    Book  Google Scholar 

  12. Knonova, M. M. Soil Organic Matter (Pergamon, New York, 1966).

    Google Scholar 

  13. Vologuev, V. R. Dokl. Akad. Nauk. SSSR 60, 1–28 (1948).

    Google Scholar 

  14. Curtis, R. O. & Post, B. W. Proc. Soil Sci. Soc. Am. 28, 285–286 (1964).

    ADS  Article  Google Scholar 

  15. Saine, G. R. Nature 210, 1295–1296 (1966).

    ADS  Article  Google Scholar 

  16. Holdridge, L. R. Life Zone Ecology (Tropical Science Center, San Jose, 1964).

    Google Scholar 

  17. MacMahon, J. A. & Wieboldt, T. F. Great Basin Natur. Mem. 2, 245–257 (1978).

    Google Scholar 

  18. Steila, D. Prof. Geogr. 18, 358–364 (1966).

    Article  Google Scholar 

  19. Tosi, J. A. Econ. Geogr. 40, 174–181 (1964).

    Google Scholar 

  20. Hahn, G. J. & Shapiro, S. S. Statistical Models in Engineering (Wiley, New York, 1968).

    MATH  Google Scholar 

  21. Schlesinger, W. H. in The Role of Terrestrial Vegetation in the Global Carbon Cycle: Methods for Appraising Changes (Wiley, New York, in the press).

  22. Manabe, S. & Wetherald, R. T. J. Atmos. Sci. 37, 99–118 (1980).

    ADS  Article  Google Scholar 

  23. Whittaker, R. H. & Likens, G. E. in Carbon and the Biosphere (eds Woodwell, G. M. & Pecan, E. V.) 281–302 (Technical Information Center, Oak Ridge, 1973).

    Google Scholar 

  24. Walter, H. Vegetation of the Earth (Springer, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Post, W., Emanuel, W., Zinke, P. et al. Soil carbon pools and world life zones. Nature 298, 156–159 (1982).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing