Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor


Renin, a protease which cleaves the prohormone angiotensinogen, releasing angiotensin I, has a major role in regulating blood pressure and electrolyte balance. However, the primary structure and the active structure of the enzyme remain unknown. The presence of an inactive form of the enzyme, activable by partial proteolysis, has led to the proposal that renin is synthesized as an inactive precursor1. Kidney juxtaglomerular cells constitute the principal source of renin, but its concentration in this tissue is too low to allow determination of its primary structure by conventional techniques. In some strains of mice, the male submaxillary glands synthesize and secrete very large amounts of an enzyme which appears indistinguishable from renal renin by immunological and physicochemical criteria2,3, thereby representing a unique opportunity to delineate the detailed features of renin. We now present the analysis of bacterial DNA recombinant clones harbouring an essentially complete transcript of renin mRNA isolated from the mouse submaxillary gland. The deduced amino acid sequence shows that renin is synthesized as a 44,209 molecular weight (Mr) precursor. Comparison with other known acid proteases shows a good alignment of renin and acid protease sequences in the neighbourhood of residues involved in the active site. N-terminal sequence analysis of renin reveals that the precursor is converted by a protein cleavage into active renin consisting of two chains of Mr 35,000 and 3,000.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Morris, B. J. & Lumbers, E. R. Biochim. biophys. Acta 289, 385–391 (1972).

    Article  CAS  Google Scholar 

  2. Michelakis, A. M., Yoshida, H., Meuzie, J., Murakami, K. & Inagami, T. Endocrinology 94, 1101–1105 (1974).

    Article  CAS  Google Scholar 

  3. Malling, C. & Poulsen, K. Biochim. biophys. Acta 491, 542–550 (1977).

    Article  CAS  Google Scholar 

  4. Rougeon, F. et al. Proc. natn. Acad. Sci. U.S.A. 78, 6367–6371 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Sikorav, J. L., Auffray, C. & Rougeon, F. Nucleic Acids Res. 8, 3143–3155 (1980).

    Article  CAS  Google Scholar 

  7. Davis, B. D. & Tai, P. C. Nature 283, 433–438 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Garnier, J., Gaye, P., Mercier, J. C. & Robson, B. Biochimie 62, 231–239 (1980).

    Article  CAS  Google Scholar 

  9. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Gross, F., Lazar, J. & Orth, H. Science 175, 656 (1972).

    Article  ADS  CAS  Google Scholar 

  11. Misono, K. S. & Inagami, T. Biochemistry 19, 2619–2622 (1980).

    Article  Google Scholar 

  12. James, M. N. G., Hsu, I. N. & Delbaere, L. T. J. Nature 267, 808–813 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Harboe, M. K. & Foltmann, B. FEBS Lett. 60, 133–135 (1975).

    Article  CAS  Google Scholar 

  14. Sepulveda, P., Marciniszyn, J. Jr, Liu, D. & Tang, J. J. biol. Chem. 250, 5082–5088 (1975).

    CAS  PubMed  Google Scholar 

  15. Foltmann, B., Pedersen, V. B., Jacobsen, H., Kauffman, D. & Wybrandt, G. Proc. natn. Acad. Sci. U.S.A. 74, 2321–2324 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Hsu, I. N., Delbaere, L. T. J., James, M. N. G. & Hofmann, T. Nature 266, 140–145 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Tang, J. Molec. cell. Biochem. 26, 93–109 (1979).

    Article  CAS  Google Scholar 

  18. Soubrier, F. et al. J. clin. Endocr. Metab. 54, 139–144 (1982).

    Article  CAS  Google Scholar 

  19. Suzuki, F., Nakamura, Y., Nagata, Y., Ohsawa, T. & Murakami, K. J. Biochem. 89, 1107–1112 (1981).

    CAS  PubMed  Google Scholar 

  20. Huang, J. S., Huang, S. S. & Tang, J. J. biol. Chem. 254, 11405–11417 (1979).

    CAS  PubMed  Google Scholar 

  21. Marciniszyn, J. Jr, Huang, J. S., Hartsuck, J. A. & Tang, J. J. biol. Chem. 251, 7095–7102 (1976).

    CAS  PubMed  Google Scholar 

  22. Steiner, D., Quinn, P., Chan, S., Marsh, J. & Tager, H. Ann. N.Y. Acad. Sci. 343, 1–16 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Rougeon, F. & Mach, B. J. biol. Chem. 252, 2209–2217 (1977).

    CAS  PubMed  Google Scholar 

  24. Dayhoff, M. O. Atlas of Protein Sequence and Structure, 105–107 (National Biochemical Research Foundation, Silver Spring, 1978).

    Google Scholar 

  25. Hunkapiller, M. W. & Hood, L. E. Biochemistry 17, 2124–2133 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Panthier, JJ., Foote, S., Chambraud, B. et al. Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor. Nature 298, 90–92 (1982).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing