Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production of colony-stimulating factors by murine T cells in limiting dilution and long-term cultures

Abstract

Colony-stimulating factors (CSF) are glycoproteins essential for the formation of colonies of mature haematopoietic cells by single immature progenitor cells (colony-forming cells (CFC)). The number of colonies in semi-solid agar cultures can be used to determine the CSF concentration in biological fluids1. Various murine cells2–6 are able to produce CSF in vitro. Supernatants of spleen cell cultures consisting of a mixture of T cells, B cells and macrophages are found to contain neutrophil-granulocyte–macrophage CSF (GM-CSF), CSF for megakaryocytes (Meg-CSF), eosinophilic granulocytes (Eo-CSF) and erythroid cells (E-CSF)5. The producer cells of these different CSF types, however, have not been defined7. We therefore determined here whether normal T cells produce CSF in vitro and whether GM-CSF, Meg-CSF, Eo-CSF and E-CSF are produced by different T-cell subsets or the progeny of single T-cell clones. Our results indicate that T cells at a high frequency (one out of three) produce CSF at variable amounts even in the absence of accessory cells following mitogen stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Metcalf, D. in Tissue Growth Factors, (ed. Baserga, R.) (Springer, New York, 1980).

    Google Scholar 

  2. Stanley, E. R. & Heard, P. M. J. biol. Chem. 252, 4305–4312 (1977).

    CAS  PubMed  Google Scholar 

  3. Staber, F. G. et al. Cell Immun. 37, 174–187 (1978).

    Article  CAS  Google Scholar 

  4. Quesenberry, P. J., Gimbrone, M. A. & McDonald, M. J. Expl Hemat. 6, Suppl. 3, 4 (1978).

    Google Scholar 

  5. Metcalf, D. & Johnson, G. R. J. cell. Physiol. 96, 31–42 (1978).

    Article  CAS  Google Scholar 

  6. Parker, J. W. & Metcalf, D. Immunology 26, 1039–1049 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Metcalfe, D. in Biology of the Lymphokines (eds Cohen, S., Pick, E. & Oppenheim, J. J.) 515–525 (Academic, New York, 1973).

    Google Scholar 

  8. Krammer, P. H., Marcucci, F., Waller, M. & Kirchner, H. Eur. J. Immun. 12, 200–204 (1982).

    Article  CAS  Google Scholar 

  9. Krammer, P. H. et al. in Isolation, Characterization, and Utilization of T Lymphocyte Clones (eds Fathman, G. & Fitch, F.) 253–262 (Academic, New York, 1982).

    Book  Google Scholar 

  10. Krammer, P. H. & Michnay, A. in Mechanisms of Lymphocyte Activation, 357–360 (Elsevier, Amsterdam, 1981).

    Google Scholar 

  11. Krammer, P. H. in The Immune System, 304–310 (Karger, Basel, 1981).

    Google Scholar 

  12. Eichmann, K., Falk, I., Melchers, I. & Simon, M. M. J. exp. Med. 152, 477–492 (1980).

    Article  CAS  Google Scholar 

  13. Staber, F. G. & Johnson, R. J. cell. Physiol. 105, 143–152 (1980).

    Article  CAS  Google Scholar 

  14. Porter, E. H. & Berry, R. J. Br. J. Cancer 17, 583–595 (1963).

    Article  CAS  Google Scholar 

  15. Metcalf, D., Johnson, G. R. & Burgess, A. W. Blood 55, 138–147 (1980).

    CAS  PubMed  Google Scholar 

  16. Schrader, J. W., Arnold, B. & Clark-Lewis, J. Nature 283, 197–199 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Nabholz, M. et al. Transplant Rev. 51, 125–156 (1980).

    CAS  Google Scholar 

  18. Marcucci, F., Waller, M., Kirchner, H. & Krammer, P. H. Nature 291, 79–81 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Waller, M., Marcucci, F., Kirchner, H., Michnay, A. & Krammer, P. H. Immun. Lett. 3, 263–266 (1981).

    Article  CAS  Google Scholar 

  20. Isakson, P., Puré, E., Vitetta, E. S. & Krammer, P. H. J. exp. Med. 155, 734–749 (1982).

    Article  CAS  Google Scholar 

  21. Krammer, P. H. et al. UCLA Symp. molec. cell. Biol. 24 (in the press).

  22. Nabel, G., Greenberger, J. S., Sakekeeny, M. A. & Cantor, H. Proc. natn. Acad. Sci. U.S.A. 78, 1157–1161 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Schreier, M. H. & Iscove, N. N. Nature 287, 228–300 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Burgess, A. W., Metcalf, D., Russell, S. H. M. & Nicola, N. A. Biochem. J. 185, 301–314 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staber, F., Hültner, L., Marcucci, F. et al. Production of colony-stimulating factors by murine T cells in limiting dilution and long-term cultures. Nature 298, 79–82 (1982). https://doi.org/10.1038/298079a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298079a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing