Translation of mRNA for human granulocyte–macrophage colony stimulating factor

Abstract

Granulocyte–macrophage colony stimulating factors (GM–CSFs) regulate the growth and differentiation of committed granulocyte and macrophage progenitor cells1–3. Operationally, the factors are recognized by their ability to stimulate the formation of granulocyte and macrophage colonies in semi-solid cultures of bone marrow cells. GM-CSFs are produced by a variety of tissues, and prominent cellular sources in man include T lymphocytes and mononuclear phagocytes1,4–7. The factors obtained from most sources are glycoproteins of molecular weight 20,000–70,000. At least two major GM-CSF subtypes have been distinguished in mice and humans on the basis of biological activity in vitro: one primarily stimulates the formation of macrophage colonies, while the other stimulates the fomation of both granulocyte and macrophage colonies1,8. We report here the translation and partial characterization of a messenger RNA for human GM-CSF that stimulates both granulocyte and macrophage colonies. The mRNA was isolated from a human T-lymphocyte cell line, and when injected into Xenopus laevis oocytes9 it directed the synthesis of biologically active GM-CSF.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Burgess, A. W. & Metcalf, D. Blood 56, 947–958 (1980).

  2. 2

    Metcalf, D. Hemopoietic Colonies: In Vitro Cloning of Normal and Leukemic Cells (Springer, New York, 1977).

  3. 3

    Moore, M. A. S. Clin. Hemat. 8, 287–310 (1979).

  4. 4

    Chervenick, P. A. & LoBuglio, A. F. Science 178, 164–166 (1977).

  5. 5

    Golde, D. W., Finley, T. N. & Cline, M. J. Lancet ii, 1397–1399 (1972).

  6. 6

    Parker, J. W. & Metcalf, D. J. Immun. 122, 502–510 (1974).

  7. 7

    Cline, M. J. & Golde, D. W. Nature 248, 703–770 (1974).

  8. 8

    Stanley, E. R. Proc. natn. Acad. Sci. U.S.A. 76, 2969–2973 (1979).

  9. 9

    Gurdon, J. B. The Control of Gene Expression in Animal Development (Harvard University Press, 1974).

  10. 10

    Golde, D. W., Quan, S. G. & Cline, M. J. Blood 52, 1068–1072 (1978).

  11. 11

    Lusis, A. J., Quon, D. H. & Golde, D. W. Blood 57, 13–21 (1981).

  12. 12

    Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. I. Biochemistry 18, 5294–5299 (1979).

  13. 13

    Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

  14. 14

    Bishop, J., Morton, J., Rosbash, M. & Richardson, M. Nature 250, 199–204 (1974).

  15. 15

    Golde, D. W. & Cline, M. J. J. clin. Invest. 51, 2981–2983 (1972).

  16. 16

    Messner, H. A., Till, J. E. & McCulloch, E. A. Blood 52, 701–710 (1973).

  17. 17

    Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

  18. 18

    Koeffler, H. P. & Golde, D. W. Science 200, 1153–1154 (1978).

  19. 19

    Lusis, A. J. & Koeffler, H. P. Proc. natn. Acad. Sci. U.S.A. 77, 5346–5350 (1980).

  20. 20

    Taniguchi, T., Pang, R. H., Yip, Y. K., Henriksen, D. & Vilcek, J. Proc. natn. Acad. Sci. U.S.A. 78, 3469–3472 (1981).

  21. 21

    Nathan, I., Groopman, J. E., Quan, S. G., Bersch, N. & Golde, D. W. Nature 292, 842–844 (1981).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.