Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Na+ transport and flux ratio through apical Na+ channels in toad bladder

Abstract

In many epithelia, the rate of NaCl reabsorption is determined by the activity of a Na+ transport system in the outer (apical) membrane. In frog skin and toad bladder, this system is thought to involve transmembrane pores through which Na+ ions move down an electrochemical activity gradient1–5. It has been shown, however, that increased intracellular Na+ concentration leads to reduction in unidirectional Na+ influx6,7, raising the possibility that ions do not move through the channel independently. The Ussing flux ratio equation is one test for independence of passive ion movements8. In particular, single-filing of ions through long pores can account for effects such as reduction of unidirectional fluxes by ions on the opposite (trans) side of the membrane; this type of transport mechanism is characterized by flux ratio exponents >1 (refs 9–11). I have evaluated the flux ratio exponent (n′) for the apical Na+ channel in the toad bladder as the ratio of tracer permeability to electrical conductance at electrochemical equilibrium9–11, that is, n′=RT/F2(GNa/JNa), where JNa and GNa are, respectively, unidirectional flux and the conductance for Na+ions through the channel in the absence of net Na+ movement. I report here values of n′ of 1.15±0.10 and 1.08±0.07 for activities of 40mM and 10 mM Na+, respectively, in the outer solution. This channel is therefore occupied by at most one Na+ ion at these activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindemann, B. & Van Driessche, W. Science 195, 292–294 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Van Driessche, W. & Lindemann, B. Nature 282, 519–520 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Li, J. H.-Y., Palmer, L. G., Edelman, I. S. & Lindemann, B. J. Membrane Biol. 64, 77–90 (1982).

    Article  CAS  Google Scholar 

  4. Palmer, L. G., Li, J. H.-Y., Lindemann, B. & Edelman, I. S. J. Membrane Biol. 64, 91–102 (1982).

    Article  CAS  Google Scholar 

  5. Fuchs, W., Hviid Larsen, E. & Lindemann, B. J. Physiol., Lond. 267, 137–166 (1977).

    Article  CAS  Google Scholar 

  6. Erlij, D. & Smith, D. J. Physiol., Lond. 228, 221–239 (1973).

    Article  CAS  Google Scholar 

  7. Chase, H. S. Jr & Al-Awqati, Q. J. gen. Physiol. 77, 693–712 (1981).

    Article  Google Scholar 

  8. Ussing, H. H. Acta physiol. scand. 19, 43–56 (1949).

    Article  CAS  Google Scholar 

  9. Hodgkin, A. L. & Keynes, R. D. J. Physiol., Lond. 128, 61–88 (1955).

    Article  CAS  Google Scholar 

  10. Heckmann, K. Biomembranes 3, 127–153 (1972).

    CAS  PubMed  Google Scholar 

  11. Hille, B. & Schwartz, W. J. gen. Physiol. 72, 409–442 (1978).

    Article  CAS  Google Scholar 

  12. Palmer, L. G., Edelman, I. S. & Lindemann, B. J. Membrane Biol. 57, 59–71 (1980).

    Article  CAS  Google Scholar 

  13. Warncke, J. & Lindemann, B. Adv. physiol. Sci. 3, 129–133 (1980).

    Google Scholar 

  14. Biber, T. U. L. & Curran, P. F. J. gen. Physiol. 56, 83–99 (1970).

    Article  CAS  Google Scholar 

  15. Thompson, S. M. & Dawson, D. C. J. Membrane Biol. 42, 357–374 (1978).

    Article  CAS  Google Scholar 

  16. MacRobbie, E. A. C. & Ussing, H. H. Acta physiol. scand. 53, 348–365 (1961).

    Article  CAS  Google Scholar 

  17. Grinstein, S. & Erlij, D. Proc. R. Soc. B202, 353–360 (1978).

    ADS  CAS  Google Scholar 

  18. Taylor, A. & Windhager, E. E. Am. J. Physiol. 236, F505–F512 (1979).

    CAS  PubMed  Google Scholar 

  19. Frazier, H. S., Dempsey, E. F. & Leaf, A. J. gen. Physiol. 45, 529–543 (1962).

    Article  CAS  Google Scholar 

  20. Aceves, J. & Cuthbert, A. W. J. Physiol., Lond. 295, 491–504 (1979).

    Article  CAS  Google Scholar 

  21. Ussing, H. H., Eskesen, K. & Lim, J. in Epithelial Ion and Water Transport (eds MacKnight, A. D. C. & Leader, J. P.) 257–264 (Raven, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, L. Na+ transport and flux ratio through apical Na+ channels in toad bladder. Nature 297, 688–689 (1982). https://doi.org/10.1038/297688a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297688a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing